Inter-Joint Coordination Deficits Revealed in the Decomposition of Endpoint Jerk During Goal-Directed Arm Movement After Stroke

Jozsef Laczko, Robert A. Scheidt, Lucia S. Simo, Davide Piovesan

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

It is well documented that neurological deficits after stroke can disrupt motor control processes that affect the smoothness of reaching movements. The smoothness of hand trajectories during multi-joint reaching depends on shoulder and elbow joint angular velocities and their successive derivatives as well as on the instantaneous arm configuration and its rate of change. Right-handed survivors of unilateral hemiparetic stroke and neurologically-intact control participants held the handle of a two-joint robot and made horizontal planar reaching movements. We decomposed endpoint jerk into components related to shoulder and elbow joint angular velocity, acceleration, and jerk. We observed an abnormal decomposition pattern in the most severely impaired stroke survivors consistent with deficits of inter-joint coordination. We then used numerical simulations of reaching movements to test whether the specific pattern of inter-joint coordination deficits observed experimentally could be explained by either a general increase in motor noise related to weakness or by an impaired ability to compensate for multi-joint interaction torque. Simulation results suggest that observed deficits in movement smoothness after stroke more likely reflect an impaired ability to compensate for multi-joint interaction torques rather than the mere presence of elevated motor noise.

Original languageEnglish (US)
Article number7815444
Pages (from-to)798-810
Number of pages13
JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
Volume25
Issue number7
DOIs
StatePublished - Jul 2017

Keywords

  • Impedance modulation
  • Jacobian
  • interaction torque
  • joint stiffness
  • reach kinematics
  • rehabilitation robotics

ASJC Scopus subject areas

  • Internal Medicine
  • Neuroscience(all)
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Inter-Joint Coordination Deficits Revealed in the Decomposition of Endpoint Jerk During Goal-Directed Arm Movement After Stroke'. Together they form a unique fingerprint.

Cite this