Interference alignment in multi-carrier interference networks

Changxin Shi*, Randall A. Berry, Michael L. Honig

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Scopus citations

Abstract

We consider an interference network with multi-carrier transmission over M parallel sub-channels. There are K transmitter-receiver pairs, each transmitter transmits a single data stream with a rank-one precoding matrix, and the receivers are assumed to be linear. We show that a necessary condition for zero interference (alignment across sub-channels) is K ≤ 2M-2. In contrast, for a Multi-Input Multi-Output (MIMO) interference network with M×M spatial channels (full channel matrices) the corresponding condition is known to be K ≤ 2M -1. We also characterize the sum rate at high Signal-to-Noise Ratios (SNR) by bounding the SNR offset (x-intercept) of the asymptote of the sum rate vs SNR curve. For a randomly chosen aligned solution as M increases, this offset shifts to the right as logM. In contrast, the SNR offset for a MIMO interference network does not increase with M. An approximation for the performance of sampling the best out of L aligned solutions is also presented. Numerical results show the analytical asymptotes accurately predict the sum rate curves at moderate to high SNRs.

Original languageEnglish (US)
Title of host publication2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011
Pages26-30
Number of pages5
DOIs
StatePublished - 2011
Event2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011 - St. Petersburg, Russian Federation
Duration: Jul 31 2011Aug 5 2011

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8104

Other

Other2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011
Country/TerritoryRussian Federation
CitySt. Petersburg
Period7/31/118/5/11

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Interference alignment in multi-carrier interference networks'. Together they form a unique fingerprint.

Cite this