TY - GEN
T1 - Interference alignment in multi-carrier interference networks
AU - Shi, Changxin
AU - Berry, Randall A.
AU - Honig, Michael L.
PY - 2011
Y1 - 2011
N2 - We consider an interference network with multi-carrier transmission over M parallel sub-channels. There are K transmitter-receiver pairs, each transmitter transmits a single data stream with a rank-one precoding matrix, and the receivers are assumed to be linear. We show that a necessary condition for zero interference (alignment across sub-channels) is K ≤ 2M-2. In contrast, for a Multi-Input Multi-Output (MIMO) interference network with M×M spatial channels (full channel matrices) the corresponding condition is known to be K ≤ 2M -1. We also characterize the sum rate at high Signal-to-Noise Ratios (SNR) by bounding the SNR offset (x-intercept) of the asymptote of the sum rate vs SNR curve. For a randomly chosen aligned solution as M increases, this offset shifts to the right as logM. In contrast, the SNR offset for a MIMO interference network does not increase with M. An approximation for the performance of sampling the best out of L aligned solutions is also presented. Numerical results show the analytical asymptotes accurately predict the sum rate curves at moderate to high SNRs.
AB - We consider an interference network with multi-carrier transmission over M parallel sub-channels. There are K transmitter-receiver pairs, each transmitter transmits a single data stream with a rank-one precoding matrix, and the receivers are assumed to be linear. We show that a necessary condition for zero interference (alignment across sub-channels) is K ≤ 2M-2. In contrast, for a Multi-Input Multi-Output (MIMO) interference network with M×M spatial channels (full channel matrices) the corresponding condition is known to be K ≤ 2M -1. We also characterize the sum rate at high Signal-to-Noise Ratios (SNR) by bounding the SNR offset (x-intercept) of the asymptote of the sum rate vs SNR curve. For a randomly chosen aligned solution as M increases, this offset shifts to the right as logM. In contrast, the SNR offset for a MIMO interference network does not increase with M. An approximation for the performance of sampling the best out of L aligned solutions is also presented. Numerical results show the analytical asymptotes accurately predict the sum rate curves at moderate to high SNRs.
UR - http://www.scopus.com/inward/record.url?scp=80054813902&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054813902&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2011.6034039
DO - 10.1109/ISIT.2011.6034039
M3 - Conference contribution
AN - SCOPUS:80054813902
SN - 9781457705953
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 26
EP - 30
BT - 2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011
T2 - 2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011
Y2 - 31 July 2011 through 5 August 2011
ER -