Interleukin-27 promotes CD8+ T cell reconstitution following antibody-mediated lymphoablation

Katayoun Ayasoufi, Daniel B. Zwick, Ran Fan, Suheyla Hasgur, Michael Nicosia, Victoria Gorbacheva, Karen S. Keslar, Booki Min, Robert L. Fairchild, Anna Valujskikh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Antibody-mediated lymphoablation is used in solid organ and stem cell transplantation and autoimmunity. Using murine anti-thymocyte globulin (mATG) in a mouse model of heart transplantation, we previously reported that the homeostatic recovery of CD8+ T cells requires help from depletion-resistant memory CD4+ T cells delivered through CD40-expressing B cells. This study investigated the mechanisms by which B cells mediate CD8+ T cell proliferation in lymphopenic hosts. While CD8+ T cell recovery required MHC class I expression in the host, the reconstitution occurred independently of MHC class I, MHC class II, or CD80/CD86 expression on B cells. mATG lymphoablation upregulated the B cell expression of several cytokine genes, including IL-15 and IL-27, in a CD4-dependent manner. Neither treatment with anti-CD122 mAb nor the use of IL-15Rα–/– recipients altered CD8+ T cell recovery after mATG treatment, indicating that IL-15 may be dispensable for T cell proliferation in our model. Instead, IL-27 neutralization or the use of IL-27Rα–/– CD8+ T cells inhibited CD8+ T cell proliferation and altered the phenotype and cytokine profile of reconstituted CD8+ T cells. Our findings uncover what we believe is a novel role of IL-27 in lymphopenia-induced CD8+ T cell proliferation and suggest that targeting B cell–derived cytokines may increase the efficacy of lymphoablation and improve transplant outcomes.

Original languageEnglish (US)
Article numbere125489
JournalJCI Insight
Issue number7
StatePublished - Apr 4 2019
Externally publishedYes

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Interleukin-27 promotes CD8+ T cell reconstitution following antibody-mediated lymphoablation'. Together they form a unique fingerprint.

Cite this