Interoceptive robustness through environment-mediated morphological development

Sam Kriegman, Francesco Corucci, Nick Cheney, Josh C. Bongard

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

Typically, AI researchers and roboticists try to realize intelligent behavior in machines by tuning parameters of a predefined structure (body plan and/or neural network architecture) using evolutionary or learning algorithms. Another but not unrelated longstanding property of these systems is their brittleness to slight aberrations, as highlighted by the growing deep learning literature on adversarial examples. Here we show robustness can be achieved by evolving the geometry of soft robots, their control systems, and how their material properties develop in response to one particular interoceptive stimulus (engineering stress) during their lifetimes. By doing so we realized robots that were equally fit but more robust to extreme material defects (such as might occur during fabrication or by damage thereafter) than robots that did not develop during their lifetimes, or developed in response to a different interoceptive stimulus (pressure). This suggests that the interplay between changes in the containing systems of agents (body plan and/or neural architecture) at different temporal scales (evolutionary and developmental) along different modalities (geometry, material properties, synaptic weights) and in response to different signals (interoceptive and external perception) all dictate those agents' abilities to evolve or learn capable and robust strategies.

Original languageEnglish (US)
Title of host publicationGECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference
PublisherAssociation for Computing Machinery, Inc
Pages109-116
Number of pages8
ISBN (Electronic)9781450356183
DOIs
StatePublished - Jul 2 2018
Event2018 Genetic and Evolutionary Computation Conference, GECCO 2018 - Kyoto, Japan
Duration: Jul 15 2018Jul 19 2018

Publication series

NameGECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference

Conference

Conference2018 Genetic and Evolutionary Computation Conference, GECCO 2018
Country/TerritoryJapan
CityKyoto
Period7/15/187/19/18

Keywords

  • Soft robotics

ASJC Scopus subject areas

  • Computer Science Applications
  • Software
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Interoceptive robustness through environment-mediated morphological development'. Together they form a unique fingerprint.

Cite this