TY - JOUR
T1 - Interplay of cation and anion redox in Li4Mn2O5 cathode material and prediction of improved Li4 (Mn,M) 2O5 electrodes for Li-ion batteries
AU - Yao, Zhenpeng
AU - Kim, Soo
AU - He, Jiangang
AU - Hegde, Vinay I.
AU - Wolverton, Chris
N1 - Publisher Copyright:
© 2018 The Authors.
PY - 2018/5/18
Y1 - 2018/5/18
N2 - Significant research effort has focused on improving the specific energy of lithium-ion batteries for emerging applications, such as electric vehicles. Recently, a rock salt-type Li4Mn2O5 cathode material with a large discharge capacity (∼350 mA hour g-1) was discovered. However, a full structural model of Li4Mn2O5 and its corresponding phase transformations, as well as the atomistic origins of the high capacity, warrants further investigation. We use first-principles density functional theory (DFT) calculations to investigate both the disordered rock salt-type Li 4Mn2O5 structure and the ordered ground-state structure. The ionic ordering in the ground-state structure is determined via a DFT-based enumeration method. We use both the ordered and disordered structures to interrogate the delithiation process and find that it occurs via a three-step reaction pathway involving the complex interplay of cation and anion redox reactions: (i) an initial metal oxidation, Mnv3+→Mn4+ (LixMn2O5, 4 > × > 2); (ii) followed by anion oxidation, O2-→O1-(2 > × > 1); and (iii) finally, further metal oxidation, Mn4+→Mn5+ (1 > × > 0). This final step is concomitant with the Mn migration from the original octahedral site to the adjacent tetrahedral site, introducing a kinetic barrier to reversible charge/ discharge cycles. Armed with this knowledge of the charging process, we use high-throughput DFT calculations to study metal mixing in this compound, screening potential new materials for stability and kinetic reversibility. We predict that mixing with M = V and Cr in Li4 (Mn,M) 4O5 will produce new stable compounds with substantially improved electrochemical properties.
AB - Significant research effort has focused on improving the specific energy of lithium-ion batteries for emerging applications, such as electric vehicles. Recently, a rock salt-type Li4Mn2O5 cathode material with a large discharge capacity (∼350 mA hour g-1) was discovered. However, a full structural model of Li4Mn2O5 and its corresponding phase transformations, as well as the atomistic origins of the high capacity, warrants further investigation. We use first-principles density functional theory (DFT) calculations to investigate both the disordered rock salt-type Li 4Mn2O5 structure and the ordered ground-state structure. The ionic ordering in the ground-state structure is determined via a DFT-based enumeration method. We use both the ordered and disordered structures to interrogate the delithiation process and find that it occurs via a three-step reaction pathway involving the complex interplay of cation and anion redox reactions: (i) an initial metal oxidation, Mnv3+→Mn4+ (LixMn2O5, 4 > × > 2); (ii) followed by anion oxidation, O2-→O1-(2 > × > 1); and (iii) finally, further metal oxidation, Mn4+→Mn5+ (1 > × > 0). This final step is concomitant with the Mn migration from the original octahedral site to the adjacent tetrahedral site, introducing a kinetic barrier to reversible charge/ discharge cycles. Armed with this knowledge of the charging process, we use high-throughput DFT calculations to study metal mixing in this compound, screening potential new materials for stability and kinetic reversibility. We predict that mixing with M = V and Cr in Li4 (Mn,M) 4O5 will produce new stable compounds with substantially improved electrochemical properties.
UR - http://www.scopus.com/inward/record.url?scp=85047164013&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047164013&partnerID=8YFLogxK
U2 - 10.1126/sciadv.aao6754
DO - 10.1126/sciadv.aao6754
M3 - Article
C2 - 29795779
AN - SCOPUS:85047164013
SN - 2375-2548
VL - 4
JO - Science Advances
JF - Science Advances
IS - 5
M1 - eaao6754
ER -