TY - JOUR
T1 - Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein
T2 - A multidimensional study
AU - Iulita, M. Florencia
AU - Allard, Simon
AU - Richter, Luise
AU - Munter, Lisa Marie
AU - Ducatenzeiler, Adriana
AU - Weise, Christoph
AU - DoCarmo, Sonia
AU - Klein, William L.
AU - Multhaup, Gerhard
AU - Cuello, A. Claudio
N1 - Funding Information:
This research was supported by a Canadian Institute for Health and Research grant (MOP-97776) to ACC, by McGill start-up funds to GM and LMM, and by the Deutsche Forschungsgemeinschaft (DFG) through MU901, the Sonderforschungsbereich SFB740, the German Federal Ministry of Education and Research through the Kompetenznetz Degenerative Demenzen (Förderkennzeichen 01 GI 0723) to GM. GM is holding a CRC Tier 1 linked to CFI infrastructure support. LMM is also funded by a Young Investigator Award from the Alzheimer Society of Canada (2013–2016). WLK was supported by a Zenith Award from the Alzheimer’s Association. MFI is the recipient of a Biomedical Doctoral Award from the Alzheimer Society of Canada. LR is supported by the Richard and Edith Strauss Postdoctoral Fellowship in Medicine from the Richard and Edith Strauss Canada Foundation. SDC is the holder of the Charles E. Frosst-Merck Post-Doctoral Fellowship. ACC is the holder of the McGill University Charles E. Frosst/Merck Chair in Pharmacology. We would like to thank Dr. Elke Küster-Schöck and the Cell Imaging and Analysis Network Center at the McGill Biology Department for their help with super-resolution microscopy. The Cuello Lab wishes to thank Dr A. Frosst, the Frosst family and Merck Canada for their unrestricted support.
Publisher Copyright:
© 2014 Iulita et al.; licensee BioMed Central Ltd.
PY - 2014/1/27
Y1 - 2014/1/27
N2 - Numerous studies have implicated the abnormal accumulation of intraneuronal amyloid-β (Aβ) as an important contributor to Alzheimer's disease (AD) pathology, capable of triggering neuroinflammation, tau hyperphosphorylation and cognitive deficits. However, the occurrence and pathological relevance of intracellular Aβ remain a matter of controversial debate. In this study, we have used a multidimensional approach including high-magnification and super-resolution microscopy, cerebro-spinal fluid (CSF) mass spectrometry analysis and ELISA to investigate the Aβ pathology and its associated cognitive impairments, in a novel transgenic rat model overexpressing human APP. Our microscopy studies with quantitative co-localization analysis revealed the presence of intraneuronal Aβ in transgenic rats, with an immunological signal that was clearly distinguished from that of the amyloid precursor protein (APP) and its C-terminal fragments (CTFs). The early intraneuronal pathology was accompanied by a significant elevation of soluble Aβ42 peptides that paralleled the presence and progression of early cognitive deficits, several months prior to amyloid plaque deposition. Aβ38, Aβ39, Aβ40 and Aβ42 peptides were detected in the rat CSF by MALDI-MS analysis even at the plaque-free stages; suggesting that a combination of intracellular and soluble extracellular Aβ may be responsible for impairing cognition at early time points. Taken together, our results demonstrate that the intraneuronal development of AD-like amyloid pathology includes a mixture of molecular species (Aβ, APP and CTFs) of which a considerable component is Aβ; and that the early presence of these species within neurons has deleterious effects in the CNS, even before the development of full-blown AD-like pathology.
AB - Numerous studies have implicated the abnormal accumulation of intraneuronal amyloid-β (Aβ) as an important contributor to Alzheimer's disease (AD) pathology, capable of triggering neuroinflammation, tau hyperphosphorylation and cognitive deficits. However, the occurrence and pathological relevance of intracellular Aβ remain a matter of controversial debate. In this study, we have used a multidimensional approach including high-magnification and super-resolution microscopy, cerebro-spinal fluid (CSF) mass spectrometry analysis and ELISA to investigate the Aβ pathology and its associated cognitive impairments, in a novel transgenic rat model overexpressing human APP. Our microscopy studies with quantitative co-localization analysis revealed the presence of intraneuronal Aβ in transgenic rats, with an immunological signal that was clearly distinguished from that of the amyloid precursor protein (APP) and its C-terminal fragments (CTFs). The early intraneuronal pathology was accompanied by a significant elevation of soluble Aβ42 peptides that paralleled the presence and progression of early cognitive deficits, several months prior to amyloid plaque deposition. Aβ38, Aβ39, Aβ40 and Aβ42 peptides were detected in the rat CSF by MALDI-MS analysis even at the plaque-free stages; suggesting that a combination of intracellular and soluble extracellular Aβ may be responsible for impairing cognition at early time points. Taken together, our results demonstrate that the intraneuronal development of AD-like amyloid pathology includes a mixture of molecular species (Aβ, APP and CTFs) of which a considerable component is Aβ; and that the early presence of these species within neurons has deleterious effects in the CNS, even before the development of full-blown AD-like pathology.
KW - APP
KW - Alzheimer's disease
KW - Amyloid-β
KW - Intracellular Aβ
KW - Pre-clinical
UR - http://www.scopus.com/inward/record.url?scp=84908191011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908191011&partnerID=8YFLogxK
U2 - 10.1186/2051-5960-2-61
DO - 10.1186/2051-5960-2-61
M3 - Article
C2 - 24903713
AN - SCOPUS:84908191011
SN - 2051-5960
VL - 2
JO - Acta neuropathologica communications
JF - Acta neuropathologica communications
IS - 1
M1 - 61
ER -