Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons

Brian J. Wainger, Evangelos Kiskinis, Cassidy Mellin, Ole Wiskow, Steve S W Han, Jackson Sandoe, Numa P. Perez, Luis A. Williams, Seungkyu Lee, Gabriella Boulting, James D. Berry, Robert H. Brown, Merit E. Cudkowicz, Bruce P. Bean, Kevin Eggan*, Clifford J. Woolf

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

305 Scopus citations

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1), C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1+/+ stem cell line do not display the hyperexcitability phenotype. SOD1A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival invitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.

Original languageEnglish (US)
Pages (from-to)1-11
Number of pages11
JournalCell reports
Volume7
Issue number1
DOIs
StatePublished - Oct 4 2014

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons'. Together they form a unique fingerprint.

Cite this