Ion adsorption at the rutile-water interface: Linking molecular and macroscopic properties

Z. Zhang, P. Fenter*, L. Cheng, N. C. Sturchio, M. J. Bedzyk, M. Předota, A. Bandura, J. D. Kubicki, S. N. Lvov, P. T. Cummings, A. A. Chialvo, M. K. Ridley, P. Bénézeth, L. Anovitz, D. A. Palmer, M. L. Machesky, D. J. Wesolowski

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

274 Scopus citations

Abstract

An understanding of the solution-crystal interface that connects the actual molecular structures to the macroscopic properties, was obtained, by combining in situ synchrotron X-ray measurements on submerged rutile single crystal surfaces with ab inito calculations, molecular dynamic simulations, and macroscopic ion adsorption data. All X-ray, ab inito, molecular dynamics, and ion adsorption results were broadly compatible with a Stern-based description of EDL structure. All cations were found to be adsorbed as 'inner sphere' species bonded directly to surface oxygen atoms. A link between macroscopic manifestations of metal oxide surface charging and ion adsorption and the molecule-scale interfacial structures was established.

Original languageEnglish (US)
Pages (from-to)4954-4969
Number of pages16
JournalLangmuir
Volume20
Issue number12
DOIs
StatePublished - Jun 8 2004

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Ion adsorption at the rutile-water interface: Linking molecular and macroscopic properties'. Together they form a unique fingerprint.

Cite this