TY - JOUR
T1 - Isolated FeII on silica as a selective propane dehydrogenation catalyst
AU - Hu, Bo
AU - Schweitzer, Neil M.
AU - Zhang, Guanghui
AU - Kraft, Steven J.
AU - Childers, David J.
AU - Lanci, Michael P.
AU - Miller, Jeffrey T.
AU - Hock, Adam S.
PY - 2015/6/5
Y1 - 2015/6/5
N2 - We report a comparative study of isolated FeII, iron oxide particles, and metallic nanoparticles on silica for non-oxidative propane dehydrogenation. It was found that the most selective catalyst was an isolated FeII species on silica prepared by grafting the open cyclopentadienide iron complex, bis(2,4-dimethyl-1,3-pentadienide) iron(II) or Fe(oCp)2. The grafting and evolution of the surface species was elucidated by 1H NMR, diffuse reflectance infrared Fourier transform spectroscopy and X-ray absorption spectroscopies. The oxidation state and local structure of surface Fe were characterized by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure. The initial grafting of iron proceeds by one surface hydroxyl Si-OH reacting with Fe(oCp)2 to release one diene ligand (oCpH), generating a SiO2-bound FeII(oCp) species, 1-FeoCp. Subsequent treatment with H2 at 400 °C leads to loss of the remaining diene ligand and formation of nanosized iron oxide clusters, 1-C. Dispersion of these Fe oxide clusters occurs at 650 °C, forming an isolated, ligand-free FeII on silica, 1-FeII, which is catalytically active and highly selective (∼99%) for propane dehydrogenation to propene. Under reaction conditions, there is no evidence of metallic Fe by in situ XANES. For comparison, metallic Fe nanoparticles, 2-NP-Fe0, were independently prepared by grafting Fe[N(SiMe3)2]2 onto silica, 2-FeN∗, and reducing it at 650 °C in H2. The Fe NPs were highly active for propane conversion but showed poor selectivity (∼14%) to propene. Independently prepared Fe oxide clusters on silica display a low activity. The sum of these results suggests that selective propane dehydrogenation occurs at isolated FeII sites.
AB - We report a comparative study of isolated FeII, iron oxide particles, and metallic nanoparticles on silica for non-oxidative propane dehydrogenation. It was found that the most selective catalyst was an isolated FeII species on silica prepared by grafting the open cyclopentadienide iron complex, bis(2,4-dimethyl-1,3-pentadienide) iron(II) or Fe(oCp)2. The grafting and evolution of the surface species was elucidated by 1H NMR, diffuse reflectance infrared Fourier transform spectroscopy and X-ray absorption spectroscopies. The oxidation state and local structure of surface Fe were characterized by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure. The initial grafting of iron proceeds by one surface hydroxyl Si-OH reacting with Fe(oCp)2 to release one diene ligand (oCpH), generating a SiO2-bound FeII(oCp) species, 1-FeoCp. Subsequent treatment with H2 at 400 °C leads to loss of the remaining diene ligand and formation of nanosized iron oxide clusters, 1-C. Dispersion of these Fe oxide clusters occurs at 650 °C, forming an isolated, ligand-free FeII on silica, 1-FeII, which is catalytically active and highly selective (∼99%) for propane dehydrogenation to propene. Under reaction conditions, there is no evidence of metallic Fe by in situ XANES. For comparison, metallic Fe nanoparticles, 2-NP-Fe0, were independently prepared by grafting Fe[N(SiMe3)2]2 onto silica, 2-FeN∗, and reducing it at 650 °C in H2. The Fe NPs were highly active for propane conversion but showed poor selectivity (∼14%) to propene. Independently prepared Fe oxide clusters on silica display a low activity. The sum of these results suggests that selective propane dehydrogenation occurs at isolated FeII sites.
KW - EXAFS
KW - Fe XANES
KW - Fe nanoparticles on silica
KW - dehydrogenation catalyst
KW - isolated Fe catalysts
KW - propane dehydrogenation
UR - http://www.scopus.com/inward/record.url?scp=84930616143&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930616143&partnerID=8YFLogxK
U2 - 10.1021/acscatal.5b00248
DO - 10.1021/acscatal.5b00248
M3 - Article
AN - SCOPUS:84930616143
SN - 2155-5435
VL - 5
SP - 3494
EP - 3503
JO - ACS Catalysis
JF - ACS Catalysis
IS - 6
ER -