Abstract
Designing a high efficiency thermoelectric material for thermal to electric energy conversion means simultaneously optimizing multiple properties of the material. Although it might seem straightforward to maximize the electrical power and minimize thermal losses, the convoluted relationship between these properties makes optimization complex, requiring a more sophisticated algorithm. The Accelerated Insertion of Materials (AIM) methodology developed to engineer the mechanical properties of complex multiphase steel alloys provides a framework for optimization that can be applied to engineer the thermal and electrical transport properties of a multiphase thermoelectric material. The AIM methodology can be utilized in creating a high figure of merit (zT) material by considering the effects of each structural parameter, such as grain size and grain boundary properties, precipitate volume fraction, and doping and defect concentration of the matrix phase on the zT of the material using a variety of analytical models. The combination of these models provides a way to accelerate the design of high zT materials.
Original language | English (US) |
---|---|
Article number | 202101 |
Journal | Applied Physics Letters |
Volume | 119 |
Issue number | 20 |
DOIs | |
State | Published - Nov 15 2021 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)