TY - GEN
T1 - Joint-based velocity feedback to virtual limb dynamic perturbations
AU - Earley, Eric J.
AU - Kaveny, Kyle J.
AU - Johnson, Reva E.
AU - Hargrove, Levi J.
AU - Sensinger, Jon W.
N1 - Funding Information:
Research supported by NSF-NRI 1317379. E. J. Earley was supported by NIH grant T32 HD07418.
PY - 2017/8/11
Y1 - 2017/8/11
N2 - Despite significant research developing myoelectric prosthesis controllers, many amputees have difficulty controlling their devices due in part to reduced sensory feedback. Many attempts at providing supplemental sensory feedback have not significantly aided control. We hypothesize this is because the feedback provided contains redundant information already provided by vision. However, whereas vision provides egocentric, position-based feedback, sensory feedback tied to joint coordinates may provide information complementary to vision. In this study, we tested if providing audio feedback of joint velocities can improve performance and adaptation to dynamic perturbations while controlling a virtual limb. While subjects performed time-controlled center-out reaches, we perturbed the dynamics of the system and measured the rate subjects adapted to this change. Our results suggest that initial errors were reduced in the presence of audio feedback, and we theorize this is due to subjects identifying the perturbed limb dynamics sooner. We also noted other possible benefits including improved muscle activation detection.
AB - Despite significant research developing myoelectric prosthesis controllers, many amputees have difficulty controlling their devices due in part to reduced sensory feedback. Many attempts at providing supplemental sensory feedback have not significantly aided control. We hypothesize this is because the feedback provided contains redundant information already provided by vision. However, whereas vision provides egocentric, position-based feedback, sensory feedback tied to joint coordinates may provide information complementary to vision. In this study, we tested if providing audio feedback of joint velocities can improve performance and adaptation to dynamic perturbations while controlling a virtual limb. While subjects performed time-controlled center-out reaches, we perturbed the dynamics of the system and measured the rate subjects adapted to this change. Our results suggest that initial errors were reduced in the presence of audio feedback, and we theorize this is due to subjects identifying the perturbed limb dynamics sooner. We also noted other possible benefits including improved muscle activation detection.
UR - http://www.scopus.com/inward/record.url?scp=85034833949&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034833949&partnerID=8YFLogxK
U2 - 10.1109/ICORR.2017.8009430
DO - 10.1109/ICORR.2017.8009430
M3 - Conference contribution
C2 - 28814002
AN - SCOPUS:85034833949
T3 - IEEE International Conference on Rehabilitation Robotics
SP - 1313
EP - 1318
BT - 2017 International Conference on Rehabilitation Robotics, ICORR 2017
A2 - Ajoudani, Arash
A2 - Artemiadis, Panagiotis
A2 - Beckerle, Philipp
A2 - Grioli, Giorgio
A2 - Lambercy, Olivier
A2 - Mombaur, Katja
A2 - Novak, Domen
A2 - Rauter, Georg
A2 - Rodriguez Guerrero, Carlos
A2 - Salvietti, Gionata
A2 - Amirabdollahian, Farshid
A2 - Balasubramanian, Sivakumar
A2 - Castellini, Claudio
A2 - Di Pino, Giovanni
A2 - Guo, Zhao
A2 - Hughes, Charmayne
A2 - Iida, Fumiya
A2 - Lenzi, Tommaso
A2 - Ruffaldi, Emanuele
A2 - Sergi, Fabrizio
A2 - Soh, Gim Song
A2 - Caimmi, Marco
A2 - Cappello, Leonardo
A2 - Carloni, Raffaella
A2 - Carlson, Tom
A2 - Casadio, Maura
A2 - Coscia, Martina
A2 - De Santis, Dalia
A2 - Forner-Cordero, Arturo
A2 - Howard, Matthew
A2 - Piovesan, Davide
A2 - Siqueira, Adriano
A2 - Sup, Frank
A2 - Lorenzo, Masia
A2 - Catalano, Manuel Giuseppe
A2 - Lee, Hyunglae
A2 - Menon, Carlo
A2 - Raspopovic, Stanisa
A2 - Rastgaar, Mo
A2 - Ronsse, Renaud
A2 - van Asseldonk, Edwin
A2 - Vanderborght, Bram
A2 - Venkadesan, Madhusudhan
A2 - Bianchi, Matteo
A2 - Braun, David
A2 - Godfrey, Sasha Blue
A2 - Mastrogiovanni, Fulvio
A2 - McDaid, Andrew
A2 - Rossi, Stefano
A2 - Zenzeri, Jacopo
A2 - Formica, Domenico
A2 - Karavas, Nikolaos
A2 - Marchal-Crespo, Laura
A2 - Reed, Kyle B.
A2 - Tagliamonte, Nevio Luigi
A2 - Burdet, Etienne
A2 - Basteris, Angelo
A2 - Campolo, Domenico
A2 - Deshpande, Ashish
A2 - Dubey, Venketesh
A2 - Hussain, Asif
A2 - Sanguineti, Vittorio
A2 - Unal, Ramazan
A2 - Caurin, Glauco Augusto de Paula
A2 - Koike, Yasuharu
A2 - Mazzoleni, Stefano
A2 - Park, Hyung-Soon
A2 - Remy, C. David
A2 - Saint-Bauzel, Ludovic
A2 - Tsagarakis, Nikos
A2 - Veneman, Jan
A2 - Zhang, Wenlong
PB - IEEE Computer Society
T2 - 2017 International Conference on Rehabilitation Robotics, ICORR 2017
Y2 - 17 July 2017 through 20 July 2017
ER -