Joint-based velocity feedback to virtual limb dynamic perturbations

Eric J. Earley, Kyle J. Kaveny, Reva E. Johnson, Levi J. Hargrove, Jon W. Sensinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Despite significant research developing myoelectric prosthesis controllers, many amputees have difficulty controlling their devices due in part to reduced sensory feedback. Many attempts at providing supplemental sensory feedback have not significantly aided control. We hypothesize this is because the feedback provided contains redundant information already provided by vision. However, whereas vision provides egocentric, position-based feedback, sensory feedback tied to joint coordinates may provide information complementary to vision. In this study, we tested if providing audio feedback of joint velocities can improve performance and adaptation to dynamic perturbations while controlling a virtual limb. While subjects performed time-controlled center-out reaches, we perturbed the dynamics of the system and measured the rate subjects adapted to this change. Our results suggest that initial errors were reduced in the presence of audio feedback, and we theorize this is due to subjects identifying the perturbed limb dynamics sooner. We also noted other possible benefits including improved muscle activation detection.

Original languageEnglish (US)
Title of host publication2017 International Conference on Rehabilitation Robotics, ICORR 2017
EditorsArash Ajoudani, Panagiotis Artemiadis, Philipp Beckerle, Giorgio Grioli, Olivier Lambercy, Katja Mombaur, Domen Novak, Georg Rauter, Carlos Rodriguez Guerrero, Gionata Salvietti, Farshid Amirabdollahian, Sivakumar Balasubramanian, Claudio Castellini, Giovanni Di Pino, Zhao Guo, Charmayne Hughes, Fumiya Iida, Tommaso Lenzi, Emanuele Ruffaldi, Fabrizio Sergi, Gim Song Soh, Marco Caimmi, Leonardo Cappello, Raffaella Carloni, Tom Carlson, Maura Casadio, Martina Coscia, Dalia De Santis, Arturo Forner-Cordero, Matthew Howard, Davide Piovesan, Adriano Siqueira, Frank Sup, Masia Lorenzo, Manuel Giuseppe Catalano, Hyunglae Lee, Carlo Menon, Stanisa Raspopovic, Mo Rastgaar, Renaud Ronsse, Edwin van Asseldonk, Bram Vanderborght, Madhusudhan Venkadesan, Matteo Bianchi, David Braun, Sasha Blue Godfrey, Fulvio Mastrogiovanni, Andrew McDaid, Stefano Rossi, Jacopo Zenzeri, Domenico Formica, Nikolaos Karavas, Laura Marchal-Crespo, Kyle B. Reed, Nevio Luigi Tagliamonte, Etienne Burdet, Angelo Basteris, Domenico Campolo, Ashish Deshpande, Venketesh Dubey, Asif Hussain, Vittorio Sanguineti, Ramazan Unal, Glauco Augusto de Paula Caurin, Yasuharu Koike, Stefano Mazzoleni, Hyung-Soon Park, C. David Remy, Ludovic Saint-Bauzel, Nikos Tsagarakis, Jan Veneman, Wenlong Zhang
PublisherIEEE Computer Society
Pages1313-1318
Number of pages6
ISBN (Electronic)9781538622964
DOIs
StatePublished - Aug 11 2017
Event2017 International Conference on Rehabilitation Robotics, ICORR 2017 - London, United Kingdom
Duration: Jul 17 2017Jul 20 2017

Publication series

NameIEEE International Conference on Rehabilitation Robotics
ISSN (Print)1945-7898
ISSN (Electronic)1945-7901

Other

Other2017 International Conference on Rehabilitation Robotics, ICORR 2017
Country/TerritoryUnited Kingdom
CityLondon
Period7/17/177/20/17

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Rehabilitation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Joint-based velocity feedback to virtual limb dynamic perturbations'. Together they form a unique fingerprint.

Cite this