Joint bias correction of temperature and precipitation in climate model simulations

Chao Li*, Eva Sinha, Daniel E. Horton, Noah S. Diffenbaugh, Anna M. Michalak

*Corresponding author for this work

Research output: Contribution to journalArticle

52 Scopus citations

Abstract

Bias correction of meteorological variables from climate model simulations is a routine strategy for circumventing known limitations of state-of-the-art general circulation models. Although the assessment of climate change impacts often depends on the joint variability of multiple variables, commonly used bias correction methodologies treat each variable independently and do not consider the relationship among variables. Independent bias correction can therefore produce non-physical corrections and may fail to capture important multivariate relationships. Here, we introduce a joint bias correction methodology (JBC) and apply it to precipitation (P) and temperature (T) fields from the fifth phase of the Climate Model Intercomparison Project (CMIP5) model ensemble. This approach is based on a general bivariate distribution of P-T and can be seen as a multivariate extension of the commonly used univariate quantile mapping method. It proceeds by correcting either P or T first and then correcting the other variable conditional upon the first one, both following the concept of the univariate quantile mapping. JBC is shown to not only reduce biases in the mean and variance of P and T similarly to univariate quantile mapping, but also to correct model-simulated biases in P-T correlation fields. JBC, using methods such as the one presented here, thus represents an important step in impacts-based research as it explicitly accounts for inter-variable relationships as part of the bias correction procedure, thereby improving not only the individual distributions of P and T, but critically, their joint distribution.

Original languageEnglish (US)
Pages (from-to)13,153-13,162
JournalJournal of Geophysical Research
Volume119
Issue number23
DOIs
StatePublished - Dec 16 2014

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Joint bias correction of temperature and precipitation in climate model simulations'. Together they form a unique fingerprint.

  • Cite this