Abstract
We study the Kähler-Ricci flow on Fano manifolds. We show that if the curvature is bounded along the flow and if the manifold is K-polystable and asymptotically Chow semistable, then the flow converges exponentially fast to a Kähler-Einstein metric.
Original language | English (US) |
---|---|
Pages (from-to) | 67-84 |
Number of pages | 18 |
Journal | Journal fur die Reine und Angewandte Mathematik |
Issue number | 640 |
DOIs | |
State | Published - Mar 2010 |
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics