Kähler-Ricci flow on stable Fano manifolds

Valentino Tosatti*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

We study the Kähler-Ricci flow on Fano manifolds. We show that if the curvature is bounded along the flow and if the manifold is K-polystable and asymptotically Chow semistable, then the flow converges exponentially fast to a Kähler-Einstein metric.

Original languageEnglish (US)
Pages (from-to)67-84
Number of pages18
JournalJournal fur die Reine und Angewandte Mathematik
Issue number640
DOIs
StatePublished - Mar 2010

ASJC Scopus subject areas

  • General Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Kähler-Ricci flow on stable Fano manifolds'. Together they form a unique fingerprint.

Cite this