@inproceedings{ea143d1ea1eb43c6b2b1be09c745493c,
title = "Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement",
abstract = "Purpose: To extend the functionality of radiographic/fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods: Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREX), and angular deviation (TREφ) from planned trajectory. Results: Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREX<2 mm and TREφ <0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREX<1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions: 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.",
keywords = "3d-2d image registration, Image-guided surgery, Quality assurance, Spine surgery, Surgical navigation",
author = "A. Uneri and Stayman, {J. W.} and {De Silva}, T. and Wang, {A. S.} and G. Kleinszig and S. Vogt and Khanna, {A. J.} and Wolinsky, {J. P.} and Gokaslan, {Z. L.} and Siewerdsen, {J. H.}",
note = "Publisher Copyright: {\textcopyright} 2015 SPIE.; Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling ; Conference date: 22-02-2015 Through 24-02-2015",
year = "2015",
doi = "10.1117/12.2082210",
language = "English (US)",
series = "Progress in Biomedical Optics and Imaging - Proceedings of SPIE",
publisher = "SPIE",
editor = "Webster, {Robert J.} and Yaniv, {Ziv R.}",
booktitle = "Medical Imaging 2015",
}