Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla

Xingfeng Shao, Fanhua Guo, Qinyang Shou, Kai Wang, Kay Jann, Lirong Yan, Arthur W. Toga, Peng Zhang, Danny J.J. Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Laminar fMRI based on BOLD and CBV contrast at ultrahigh magnetic fields has been applied for studying the dynamics of mesoscopic brain networks. However, the quantitative interpretations of BOLD/CBV fMRI results are confounded by different baseline physiology across cortical layers. Here we introduce a novel 3D zoomed pseudo-continuous arterial spin labeling (pCASL) technique at 7T that offers the capability for quantitative measurements of laminar cerebral blood flow (CBF) both at rest and during task activation with high spatial specificity and sensitivity. We found arterial transit time in superficial layers is ∼100 ms shorter than in middle/deep layers revealing the time course of labeled blood flowing from pial arteries to downstream microvasculature. Resting state CBF peaked in the middle layers which is highly consistent with microvascular density measured from human cortex specimens. Finger tapping induced a robust two-peak laminar profile of CBF increases in the superficial (somatosensory and premotor input) and deep (spinal output) layers of M1, while finger brushing task induced a weaker CBF increase in superficial layers (somatosensory input). This observation is highly consistent with reported laminar profiles of CBV activation on M1. We further demonstrated that visuospatial attention induced a predominant CBF increase in deep layers and a smaller CBF increase on top of the lower baseline CBF in superficial layers of V1 (feedback cortical input), while stimulus driven activity peaked in the middle layers (feedforward thalamic input). With the capability for quantitative CBF measurements both at baseline and during task activation, high-resolution ASL perfusion fMRI at 7T provides an important tool for in vivo assessment of neurovascular function and metabolic activities of neural circuits across cortical layers.

Original languageEnglish (US)
Article number118724
StatePublished - Dec 15 2021


  • Arterial spin labeling
  • Laminar fMRI
  • Neural circuit
  • Perfusion
  • Ultrahigh field
  • Visual spatial attention

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience


Dive into the research topics of 'Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla'. Together they form a unique fingerprint.

Cite this