TY - JOUR
T1 - LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease
AU - Rothaug, Michelle
AU - Stroobants, Stijn
AU - Schweizer, Michaela
AU - Peters, Judith
AU - Zunke, Friederike
AU - Allerding, Mirka
AU - D'Hooge, Rudi
AU - Saftig, Paul
AU - Blanz, Judith
N1 - Funding Information:
This work was supported by the Research Training Group (GRK1459), funded by the Deutsche Forschungsgemeinschaft to J.B., an EU grant to P.S. and J.B. (EU/ALPHA-MAN 261331) and the Interuniversity Attraction Poles Program (IUAP P7/16) of the Belgian Federal Science Policy Office. S.S. received support from the MM Delacroix foundation. F.Z. is supported by the Böhringer Ingelheim Fonds. We thank Meryem Senkara, Inez Götting, Lisa Andresen, Emanuela Szpotovicz and Rasa C. Raithore for excellent technical assistance.
PY - 2015/1/31
Y1 - 2015/1/31
N2 - The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington's and Parkinson's disease. To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions. Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus.
AB - The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington's and Parkinson's disease. To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions. Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus.
UR - http://www.scopus.com/inward/record.url?scp=85017330629&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017330629&partnerID=8YFLogxK
U2 - 10.1186/s40478-014-0182-y
DO - 10.1186/s40478-014-0182-y
M3 - Article
C2 - 25637286
AN - SCOPUS:85017330629
SN - 2051-5960
VL - 3
SP - 6
JO - Acta Neuropathologica Communications
JF - Acta Neuropathologica Communications
ER -