Large teams develop and small teams disrupt science and technology

Lingfei Wu, Dashun Wang, James A. Evans*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

603 Scopus citations

Abstract

One of the most universal trends in science and technology today is the growth of large teams in all areas, as solitary researchers and small teams diminish in prevalence1–3. Increases in team size have been attributed to the specialization of scientific activities3, improvements in communication technology4,5, or the complexity of modern problems that require interdisciplinary solutions6–8. This shift in team size raises the question of whether and how the character of the science and technology produced by large teams differs from that of small teams. Here we analyse more than 65 million papers, patents and software products that span the period 1954–2014, and demonstrate that across this period smaller teams have tended to disrupt science and technology with new ideas and opportunities, whereas larger teams have tended to develop existing ones. Work from larger teams builds on more-recent and popular developments, and attention to their work comes immediately. By contrast, contributions by smaller teams search more deeply into the past, are viewed as disruptive to science and technology and succeed further into the future—if at all. Observed differences between small and large teams are magnified for higher-impact work, with small teams known for disruptive work and large teams for developing work. Differences in topic and research design account for a small part of the relationship between team size and disruption; most of the effect occurs at the level of the individual, as people move between smaller and larger teams. These results demonstrate that both small and large teams are essential to a flourishing ecology of science and technology, and suggest that, to achieve this, science policies should aim to support a diversity of team sizes.

Original languageEnglish (US)
Pages (from-to)378-382
Number of pages5
JournalNature
Volume566
Issue number7744
DOIs
StatePublished - Feb 21 2019

Funding

Acknowledgements We are grateful for support from AFOSR grants FA9550-15-1-0162 and FA9550-17-1-0089, the John Templeton Foundation’s grant to the Metaknowledge Network, DARPA’s Big Mechanism program grant 14145043, National Science Foundation grant SBE 1158803, 1829344 and 1829366. We thank the University of Chicago Organizations and Markets seminar, the Swarma Club (Beijing), and Clarivate Analytics for supplying the Web of Science data. Extended Data Fig. 10 | Small, disruptive teams contribute disproportionately to Nobel Prizes and are underrepresented with government funding. a, Underfunded small-team, disruptive research. Disruption percentile versus team size for WOS papers either not annotated as funded, or as funded by the largest government agencies around the world. The 477,702 funded papers cover the time period 2004– 2014, and include 198,103 for NSF, 80,448 for NSFC, 81,296 for ERC and EC, 75,881 for DFG and 58,275 for JSPS. These papers are published across 7,325 journals, and a paper may be funded by multiple agencies. The average disruption of these papers is −0.0024, ranking in the tail 31.0% of all WOS papers in the same period. We select 5,305,534 papers without any funding annotations from the same 7,325 journals and same time period (2004–2014) as a control group (dashed curve). The dashed grey line shows the mean disruption percentile for the control group. b, We select 191,717 papers published between 2008 and 2014 that acknowledged NSF with a grant number and retrieved grant size from the NSF website, including 140,972 papers for less than or equal to 1 million US dollars, 24,370 papers for 1–5 million US dollars and 26,375 papers for more than 5 million US dollars. The green and red zones mark two regions of interest: small-team (three or fewer members) disruptive (positive disruption) papers in green and large-team developing work in red. The probability of observing small-team disruptive papers in NSF granted papers is almost half that of observing them in the control group. c, We select 877 Nobel-Prize-winning papers that cover the time period 1902–2009, including 316 papers in Physiology or Medicine, 284 papers in Physics and 277 papers in Chemistry. We select 3,372,570 papers from the same 178 journals and same time period (1902–2009) as a control group (dashed curve). The average disruption of the Nobel-prize-winning papers is 0.10, ranking among the top 2% of all WOS papers from the same period. d, The probability of observing small-team disruptive papers is nearly three times as high in Nobel-Prize-winning papers as in the control group.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Large teams develop and small teams disrupt science and technology'. Together they form a unique fingerprint.

Cite this