TY - JOUR
T1 - Lattice-matched transition metal disulfide intergrowths
T2 - The metallic conductors Ag2Te(MS2)3 (M = V, Nb)
AU - Nguyen, Sandy L.
AU - Malliakas, Christos D.
AU - Francisco, Melanie C.
AU - Kanatzidis, Mercouri G.
PY - 2013/6/3
Y1 - 2013/6/3
N2 - We present new chalcogenide compounds, Ag2Te(MS 2)3 (M = V, Nb), built up of alternating planes of [MS2] and [Ag2Te]. The Ag and Te atoms are linearly coordinated by S atoms in the [MS2] layers and held in place by covalent interactions. Structural polymorphism was found by single crystal X-ray diffraction studies, where long-range ordering or disorder of the Ag and Te atoms within the hexagonal planar [Ag2Te] layer yielded two distinct crystal forms. When the Ag and Te atoms are ordered, the two isostructural compounds crystallize in the non-centrosymmetric P6Ì...2m space group, with a = 5.5347(8) Å, c = 8.0248(16) Å, and V = 212.89(6) Å3 for α-Ag2Te(VS2)3 and a = 5.7195(8) Å, c = 8.2230(16) Å, and V = 232.96(6) Å3 for α-Ag2Te(NbS2)3. For the occupationally disordered Ag/Te arrangement, a subcell of the ordered phase that crystallizes in the non-centrosymmetric P6Ì...m2 space group, with a = 3.2956(6) Å (=aa/(3)1/2), c = 8.220(2) Å, and V = 77.31(3) Å3 for β-Ag 2Te(VS2)3, was identified. Furthermore, pair distribution function analysis revealed local distortions in the [Ag 2Te] layer. Band structure calculations at the density functional theory level were carried out to investigate the electronic structure of Ag 2Te(MS2)3. Electronic transport measurements on Ag2Te(MS2)3 show that they exhibit p-type metallic behavior. Thermal analyses and temperature-dependent powder X-ray diffraction studies were focused on the stability and transformation/ decomposition of the Ag2Te(MS2)3 phases. Magnetic susceptibility data are also reported. The new intercalated Ag 2Te(MS2)3 system features a unique hypervalent Te with a three-center, four-electron bonding environment isoelectronic to that found in I3-.
AB - We present new chalcogenide compounds, Ag2Te(MS 2)3 (M = V, Nb), built up of alternating planes of [MS2] and [Ag2Te]. The Ag and Te atoms are linearly coordinated by S atoms in the [MS2] layers and held in place by covalent interactions. Structural polymorphism was found by single crystal X-ray diffraction studies, where long-range ordering or disorder of the Ag and Te atoms within the hexagonal planar [Ag2Te] layer yielded two distinct crystal forms. When the Ag and Te atoms are ordered, the two isostructural compounds crystallize in the non-centrosymmetric P6Ì...2m space group, with a = 5.5347(8) Å, c = 8.0248(16) Å, and V = 212.89(6) Å3 for α-Ag2Te(VS2)3 and a = 5.7195(8) Å, c = 8.2230(16) Å, and V = 232.96(6) Å3 for α-Ag2Te(NbS2)3. For the occupationally disordered Ag/Te arrangement, a subcell of the ordered phase that crystallizes in the non-centrosymmetric P6Ì...m2 space group, with a = 3.2956(6) Å (=aa/(3)1/2), c = 8.220(2) Å, and V = 77.31(3) Å3 for β-Ag 2Te(VS2)3, was identified. Furthermore, pair distribution function analysis revealed local distortions in the [Ag 2Te] layer. Band structure calculations at the density functional theory level were carried out to investigate the electronic structure of Ag 2Te(MS2)3. Electronic transport measurements on Ag2Te(MS2)3 show that they exhibit p-type metallic behavior. Thermal analyses and temperature-dependent powder X-ray diffraction studies were focused on the stability and transformation/ decomposition of the Ag2Te(MS2)3 phases. Magnetic susceptibility data are also reported. The new intercalated Ag 2Te(MS2)3 system features a unique hypervalent Te with a three-center, four-electron bonding environment isoelectronic to that found in I3-.
UR - http://www.scopus.com/inward/record.url?scp=84878634228&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878634228&partnerID=8YFLogxK
U2 - 10.1021/ic400483d
DO - 10.1021/ic400483d
M3 - Article
C2 - 23672316
AN - SCOPUS:84878634228
SN - 0020-1669
VL - 52
SP - 6520
EP - 6532
JO - Inorganic chemistry
JF - Inorganic chemistry
IS - 11
ER -