Lattice Mismatch in Crystalline Nanoparticle Thin Films

Paul A. Gabrys, Soyoung E. Seo, Mary X. Wang, Eunbi Oh, Robert J. Macfarlane*, Chad A. Mirkin

*Corresponding author for this work

Research output: Contribution to journalArticle

15 Scopus citations

Abstract

For atomic thin films, lattice mismatch during heteroepitaxy leads to an accumulation of strain energy, generally causing the films to irreversibly deform and generate defects. In contrast, more elastically malleable building blocks should be better able to accommodate this mismatch and the resulting strain. Herein, that hypothesis is tested by utilizing DNA-modified nanoparticles as "soft," programmable atom equivalents to grow a heteroepitaxial colloidal thin film. Calculations of interaction potentials, small-angle X-ray scattering data, and electron microscopy images show that the oligomer corona surrounding a particle core can deform and rearrange to store elastic strain up to ±7.7% lattice mismatch, substantially exceeding the ±1% mismatch tolerated by atomic thin films. Importantly, these DNA-coated particles dissipate strain both elastically through a gradual and coherent relaxation/broadening of the mismatched lattice parameter and plastically (irreversibly) through the formation of dislocations or vacancies. These data also suggest that the DNA cannot be extended as readily as compressed, and thus the thin films exhibit distinctly different relaxation behavior in the positive and negative lattice mismatch regimes. These observations provide a more general understanding of how utilizing rigid building blocks coated with soft compressible polymeric materials can be used to control nano- and microstructure.

Original languageEnglish (US)
Pages (from-to)579-585
Number of pages7
JournalNano letters
Volume18
Issue number1
DOIs
StatePublished - Jan 10 2018

Keywords

  • Nanoparticle
  • epitaxy
  • lattice mismatch
  • self-assembly
  • thin film

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Lattice Mismatch in Crystalline Nanoparticle Thin Films'. Together they form a unique fingerprint.

  • Cite this

    Gabrys, P. A., Seo, S. E., Wang, M. X., Oh, E., Macfarlane, R. J., & Mirkin, C. A. (2018). Lattice Mismatch in Crystalline Nanoparticle Thin Films. Nano letters, 18(1), 579-585. https://doi.org/10.1021/acs.nanolett.7b04737