TY - GEN
T1 - Learning from unannotated QA pairs to analogically disambiguate and answer questions
AU - Crouse, Maxwell
AU - McFate, Clifton
AU - Forbus, Kenneth D
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - Creating systems that can learn to answer natural language questions has been a longstanding challenge for artificial intelligence. Most prior approaches focused on producing a specialized language system for a particular domain and dataset, and they required training on a large corpus manually annotated with logical forms. This paper introduces an analogy-based approach that instead adapts an existing general purpose semantic parser to answer questions in a novel domain by jointly learning disambiguation heuristics and query construction templates from purely textual question-answer pairs. Our technique uses possible semantic interpretations of the natural language questions and answers to constrain a query-generation procedure, producing cases during training that are subsequently reused via analogical retrieval and composed to answer test questions. Bootstrapping an existing semantic parser in this way significantly reduces the number of training examples needed to accurately answer questions. We demonstrate the efficacy of our technique using the Geoquery corpus, on which it approaches state of the art performance using 10-fold cross validation, shows little decrease in performance with 2-folds, and achieves above 50% accuracy with as few as 10 examples.
AB - Creating systems that can learn to answer natural language questions has been a longstanding challenge for artificial intelligence. Most prior approaches focused on producing a specialized language system for a particular domain and dataset, and they required training on a large corpus manually annotated with logical forms. This paper introduces an analogy-based approach that instead adapts an existing general purpose semantic parser to answer questions in a novel domain by jointly learning disambiguation heuristics and query construction templates from purely textual question-answer pairs. Our technique uses possible semantic interpretations of the natural language questions and answers to constrain a query-generation procedure, producing cases during training that are subsequently reused via analogical retrieval and composed to answer test questions. Bootstrapping an existing semantic parser in this way significantly reduces the number of training examples needed to accurately answer questions. We demonstrate the efficacy of our technique using the Geoquery corpus, on which it approaches state of the art performance using 10-fold cross validation, shows little decrease in performance with 2-folds, and achieves above 50% accuracy with as few as 10 examples.
UR - http://www.scopus.com/inward/record.url?scp=85060496073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060496073&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85060496073
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 654
EP - 662
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI Press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -