Leveraging multimodal learning analytics to differentiate student learning strategies

Marcelo Worsley, Paulo Blikstein

Research output: Chapter in Book/Report/Conference proceedingConference contribution

62 Scopus citations

Abstract

Multimodal analysis has had demonstrated effectiveness in studying and modeling several human-human and human-computer interactions. In this paper, we explore the role of multimodal analysis in the service of studying complex learning environments. We compare uni-modal and multimodal; manual and semiautomated methods for examining how students learn in a handson, engineering design context. Specifically, we compare human annotations, speech, gesture and electro-dermal activation data from a study (N=20) where student participating in two different experimental conditions. The experimental conditions have already been shown to be associated with differences in learning gains and design quality. Hence, one objective of this paper is to identify the behavioral practices that differed between the two experimental conditions, as this may help us better understand how the learning interventions work. An additional objective is to provide examples of how to conduct learning analytics research in complex environments and compare how the same algorithm, when used with different forms of data can provide complementary results.

Original languageEnglish (US)
Title of host publicationProceedings of the 5th International Conference on Learning Analytics and Knowledge, LAK 2015
PublisherAssociation for Computing Machinery
Pages360-367
Number of pages8
Volume16-20-March-2015
ISBN (Electronic)9781450334174
DOIs
StatePublished - Mar 16 2015
Event5th International Conference on Learning Analytics and Knowledge, LAK 2015 - Poughkeepsie, United States
Duration: Mar 16 2015Mar 20 2015

Other

Other5th International Conference on Learning Analytics and Knowledge, LAK 2015
Country/TerritoryUnited States
CityPoughkeepsie
Period3/16/153/20/15

Keywords

  • Computational
  • Constructionist
  • Data Mining
  • Learning Sciences

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Computer Networks and Communications
  • Computer Vision and Pattern Recognition
  • Software

Fingerprint

Dive into the research topics of 'Leveraging multimodal learning analytics to differentiate student learning strategies'. Together they form a unique fingerprint.

Cite this