Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts

Felix Adom, Jennifer B. Dunn*, Jeongwoo Han, Norm Sather

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

104 Scopus citations

Abstract

Biomass-derived chemical products may offer reduced environmental impacts compared to their fossil-derived counterparts and could improve profit margins at biorefineries when coproduced with higher-volume, lower-profit margin biofuels. It is important to assess on a life-cycle basis the energy and environmental impacts of these bioproducts as compared to conventional, fossil-derived products. We undertook a life-cycle analysis of eight bioproducts produced from either algal-derived glycerol or corn stover-derived sugars. Selected on the basis of technology readiness and market potential, the bioproducts are propylene glycol, 1,3-propanediol, 3-hydroxypropionic acid, acrylic acid, polyethylene, succinic acid, isobutanol, and 1,4-butanediol. We developed process simulations to obtain energy and material flows in the production of each bioproduct and examined sensitivity of these flows to process design assumptions. Conversion process data for fossil-derived products were based on the literature. Conversion process data were combined with upstream parameters in the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to generate life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC) for each bioproduct and its corresponding petroleum-derived product. The bioproducts uniformly offer GHG emissions reductions compared to their fossil counterparts ranging from 39 to 86% on a cradle-to-grave basis. Similarly, FEC was lower for bioproducts than for conventional products.

Original languageEnglish (US)
Pages (from-to)14624-14631
Number of pages8
JournalEnvironmental Science and Technology
Volume48
Issue number24
DOIs
StatePublished - Dec 16 2014

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts'. Together they form a unique fingerprint.

Cite this