Abstract
Copper(I) iodide hybrids are of interest for next-generation lighting technologies because of their efficient luminescence in the absence of rare-earth elements. Here, we report 10 structurally diverse hybrid copper(I) iodides that emit in the green-red region with quantum yields reaching 67%. The compounds display a diversity of structures including ones with one-dimensional (1D) Cu-1 chains, Cu2I2 rhomboid dimers, and structures with two different arrangements of Cu4I4 tetramers. The compounds with Cu2I2 rhomboid dimers or Cu4I4 cubane tetramers have higher photoluminescence quantum yields than those with Cu-I 1D chains and octahedral Cu4I4 tetramers, owing to the optimal degree of condensation of the inorganic motifs, which suppresses nonradiative processes. Electronic structure calculations on these compounds point out the critical influence of the inorganic motif and organic ligand on the nature of the band gaps and thus the excitation characteristics. Temperature-dependent photoluminescence spectra are presented to better understand the nature of luminescence in compounds with different inorganic motifs. The emerging understanding of composition-structure-property correlations in this family provides inspiration for the rational design of hybrid phosphors for general lighting applications.
Original language | English (US) |
---|---|
Pages (from-to) | 3206-3216 |
Number of pages | 11 |
Journal | Chemistry of Materials |
Volume | 34 |
Issue number | 7 |
DOIs | |
State | Published - Apr 12 2022 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
- Materials Chemistry
Fingerprint
Dive into the research topics of 'Ligand Control of Structural Diversity in Luminescent Hybrid Copper(I) Iodides'. Together they form a unique fingerprint.Datasets
-
CCDC 2123476: Experimental Crystal Structure Determination
Wang, S. (Contributor), Morgan, E. E. (Contributor), Panuganti, S. (Contributor), Mao, L. (Contributor), Vishnoi, P. (Contributor), Wu, G. (Contributor), Liu, Q. (Contributor), Kanatzidis, M. G. (Contributor), Schaller, R. D. (Contributor) & Seshadri, R. (Contributor), Cambridge Crystallographic Data Centre, 2022
DOI: 10.5517/ccdc.csd.cc298n7h, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc298n7h&sid=DataCite
Dataset
-
CCDC 2123477: Experimental Crystal Structure Determination
Wang, S. (Contributor), Morgan, E. E. (Contributor), Panuganti, S. (Contributor), Mao, L. (Contributor), Vishnoi, P. (Contributor), Wu, G. (Contributor), Liu, Q. (Contributor), Kanatzidis, M. G. (Contributor), Schaller, R. D. (Contributor) & Seshadri, R. (Contributor), Cambridge Crystallographic Data Centre, 2022
DOI: 10.5517/ccdc.csd.cc298n8j, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc298n8j&sid=DataCite
Dataset
-
CCDC 2123480: Experimental Crystal Structure Determination
Wang, S. (Contributor), Morgan, E. E. (Contributor), Panuganti, S. (Contributor), Mao, L. (Contributor), Vishnoi, P. (Contributor), Wu, G. (Contributor), Liu, Q. (Contributor), Kanatzidis, M. G. (Contributor), Schaller, R. D. (Contributor) & Seshadri, R. (Contributor), Cambridge Crystallographic Data Centre, 2022
DOI: 10.5517/ccdc.csd.cc298ncm, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc298ncm&sid=DataCite
Dataset