TY - JOUR
T1 - Ligand migration pathway and protein dynamics in myoglobin
T2 - A time-resolved crystallographic study on L29W MbCO
AU - Schmidt, Marius
AU - Nienhaus, Karin
AU - Pahl, Reinhard
AU - Krasselt, Angela
AU - Anderson, Spencer
AU - Parak, Fritz
AU - Nienhaus, G. Ulrich
AU - Šrajer, Vukica
PY - 2005/8/16
Y1 - 2005/8/16
N2 - By using time-resolved x-ray crystallography at room temperature, structural relaxations and ligand migration were examined in myoglobin (Mb) mutant L29W from nanoseconds to seconds after photodissociation of carbon monoxide (CO) from the heme iron by nanosecond laser pulses, The data were analyzed in terms of transient kinetics by fitting trial functions to integrated difference electron density values obtained from select structural moieties, thus allowing a quantitative description of the processes involved. The observed relaxations are linked to other investigations on protein dynamics, At the earliest times, the heme has already completely relaxed into its domed deoxy structure, and there is no photodissociated CO visible at the primary docking site, Initial relaxations of larger globin moieties are completed within several hundred nanoseconds. They influence the concomitant migration of photodissociated CO to the Xe1 site, where it appears at ≈300 ns and leaves again at ≈1.5 ms. The extremely long residence time in Xe1 as compared with wild-type MbCO implies that, in the latter protein, the CO exits the protein from Xe1 predominantly via the distal pocket, A well-defined deligated state is populated between ≈2 μs and ≈1 ms; its structure is very similar to the equilibrium deoxy structure, Between 1.5 and 20 ms, no CO is visible in the protein interior; it is either distributed among many sites within the protein or has escaped to the solvent, Finally, recombination at the heme iron occurs after >20 ms.
AB - By using time-resolved x-ray crystallography at room temperature, structural relaxations and ligand migration were examined in myoglobin (Mb) mutant L29W from nanoseconds to seconds after photodissociation of carbon monoxide (CO) from the heme iron by nanosecond laser pulses, The data were analyzed in terms of transient kinetics by fitting trial functions to integrated difference electron density values obtained from select structural moieties, thus allowing a quantitative description of the processes involved. The observed relaxations are linked to other investigations on protein dynamics, At the earliest times, the heme has already completely relaxed into its domed deoxy structure, and there is no photodissociated CO visible at the primary docking site, Initial relaxations of larger globin moieties are completed within several hundred nanoseconds. They influence the concomitant migration of photodissociated CO to the Xe1 site, where it appears at ≈300 ns and leaves again at ≈1.5 ms. The extremely long residence time in Xe1 as compared with wild-type MbCO implies that, in the latter protein, the CO exits the protein from Xe1 predominantly via the distal pocket, A well-defined deligated state is populated between ≈2 μs and ≈1 ms; its structure is very similar to the equilibrium deoxy structure, Between 1.5 and 20 ms, no CO is visible in the protein interior; it is either distributed among many sites within the protein or has escaped to the solvent, Finally, recombination at the heme iron occurs after >20 ms.
KW - Kinetics
KW - Laue crystallography
KW - Protein relaxation
UR - http://www.scopus.com/inward/record.url?scp=23844539617&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=23844539617&partnerID=8YFLogxK
U2 - 10.1073/pnas.0504932102
DO - 10.1073/pnas.0504932102
M3 - Article
C2 - 16085709
AN - SCOPUS:23844539617
SN - 0027-8424
VL - 102
SP - 11704
EP - 11709
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 33
ER -