Ligand Spin Densities in Blue Copper Proteins by Q-Band 1H and N ENDOR Spectroscopy

Melanie M. Werst, Clark E. Davoust, Brian M. Hoffman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

221 Scopus citations


The type 1 or blue copper centers of poplar plastocyanin (Populus nigra car italica), azurin (Pseudomonas aeruginosa), stellacyanin (Rhus vernicifera), and type 2 reduced fungal (Polyporous versicolor) and tree (R. vernicifera) lacease have been studied by Q-band (35 GHz) ENDOR spectroscopy. At this microwave frequency the 1H and 14N resonances occur in completely distinct radio-frequency ranges, and this has enabled us to study them individually for the first time. Each protein exhibits strongly coupled methylene protons of cysteine with isotropic hyperfine splittings in the range 16–31 MHz. The measurements indicate that the geometry of the Cu-cys linkage as measured by the Hβ–Cβ–S–Cu dihedral angles is remarkably similar in all these proteins, −58° ≲ θ(Hβ2) ≲ -50°. With one exception, all the proteins have a similar, large total spin density on sulfur; fungal lacease appears to have a larger value but rather may differ slightly in structure. The Cu-bound nitrogens of the two histidine ligands of plastocyanin give a single 14N resonance with isotropic coupling (AN ~ 22 MHz) and thus the Cu–N bonds appear effectively equivalent although they differ metrically. In contrast, azurin, stellacyanin, and fungal lacease exhibit 14N signals with isotropic hyperfine interactions from two inequivalent histidyl nitrogen ligands. We estimate the sum of the spin densities on N to be ≳0.1 and the overall spin density on ligands to be over 50%. The 14N ENDOR of the similar site of tree lacease requires that it be unlike any of the other type 1 centers studied, with at least one 14N ligand whose hyperfine tensor is highly anisotropic. Together, the 1H and 14N data suggest that the single-site proteins and the laceases fall into different subclasses. The advantages of the Q-Band ENDOR technique over alternate methods of determining ligand superhyperfine couplings also are discussed.

Original languageEnglish (US)
Pages (from-to)1533-1538
Number of pages6
JournalJournal of the American Chemical Society
Issue number5
StatePublished - 1991

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Ligand Spin Densities in Blue Copper Proteins by Q-Band 1H and N ENDOR Spectroscopy'. Together they form a unique fingerprint.

Cite this