Abstract
Self-consistent Density Functional calculations have been performed on a variety of planar conjugated Ni-centered macrocycles with a basic tetraazaporphyrinic core and dithiolene groups (PZ) or fused-benzo groups (PC). Theoretical energy diagrams, charge and spin distributions and densities of states have been obtained in order to understand the electronic structure modifications due to peripheral ligand substitution. The substituents role in altering electronic properties and charge distribution of the porphyrazine macrocycles has been used to interpret the observed variations in optical absorption profiles. In the Q-band (approx. 680 nm) region, a single peak is seen for high symmetry (D4h) macrocycles and a double peak for lower symmetry (D2h and C2v) systems. Calculated intensities and band splittings are compared in detail with qualitative molecular orbital models and experiment in the visible and UV regions. Predictions are made for the infrared absorption and semiconducting band gap.
Original language | English (US) |
---|---|
Pages (from-to) | 137-142 |
Number of pages | 6 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 393 |
State | Published - Dec 1 1995 |
Event | Proceedings of the 1995 MRS Spring Meeting - San Francisco, CA, USA Duration: Apr 17 1995 → Apr 21 1995 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering