Light-shift imbalance induced blockade of collective excitations beyond the lowest order

M. S. Shahriar, P. Pradhan, G. S. Pati*, V. Gopal, K. Salit

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Current proposals focusing on neutral atoms for quantum computing are mostly based on using single atoms as quantum bits (qubits), while using cavity induced coupling or dipole-dipole interaction for two-qubit operations. An alternative approach is to use atomic ensembles as quantum bits. However, when an atomic ensemble is excited, by a laser beam matched to a two-level transition (or a Raman transition) for example, it leads to a cascade of many states as more and more photons are absorbed [R.H. Dicke, Phys. Rev. 93 (1954) 99]. In order to make use of an ensemble as a qubit, it is necessary to disrupt this cascade, and restrict the excitation to the absorption (and emission) of a single photon only. Here, we show how this can be achieved by using a new type of blockade mechanism, based on the light-shift imbalance (LSI) in a Raman transition. We describe first a simple example illustrating the concept of light-shift imbalance induced blockade (LSIIB) using a multi-level structure in a single atom, and show verifications of the analytic prediction using numerical simulations. We then extend this model to show how a blockade can be realized by using LSI in the excitation of an ensemble. Specifically, we show how the LSIIB process enables one to treat the ensemble as a two-level atom that undergoes fully deterministic Rabi oscillations between two collective quantum states, while suppressing excitations of higher order collective states.

Original languageEnglish (US)
Pages (from-to)94-98
Number of pages5
JournalOptics Communications
Issue number1
StatePublished - Oct 1 2007


  • 020.1670
  • 270.0270
  • 270.1670

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Light-shift imbalance induced blockade of collective excitations beyond the lowest order'. Together they form a unique fingerprint.

Cite this