Abstract
The purpose of this study was to find a parsimonious representation of hand kinematics data that could facilitate prosthetic hand control. Principal Component Analysis (PCA) and a non-linear Autoencoder Network (nAEN) were compared in their effectiveness at capturing the essential characteristics of a wide spectrum of hand gestures and actions. Performance of the two methods was compared on (a) the ability to accurately reconstruct hand kinematic data from a latent manifold of reduced dimension, (b) variance distribution across latent dimensions, and (c) the separability of hand movements in compressed and reconstructed representations derived using a linear classifier. The nAEN exhibited higher performance than PCA in its ability to more accurately reconstruct hand kinematic data from a latent manifold of reduced dimension. Whereas, for two dimensions in the latent manifold, PCA was able to account for 78% of input data variance, nAEN accounted for 94%. In addition, the nAEN latent manifold was spanned by coordinates with more uniform share of signal variance compared to PCA. Lastly, the nAEN was able to produce a manifold of more separable movements than PCA, as different tasks, when reconstructed, were more distinguishable by a linear classifier, SoftMax regression. It is concluded that non-linear dimensionality reduction may offer a more effective platform than linear methods to control prosthetic hands.
Original language | English (US) |
---|---|
Article number | 429 |
Journal | Frontiers in Bioengineering and Biotechnology |
Volume | 8 |
DOIs | |
State | Published - May 5 2020 |
Funding
This project was supported by NSF-1632259, by DHHS NIDILRR Grant 90REGE0005-01-00 (COMET), by NIH/NIBIB grant 1R01EB024058-01A1, by the US-Israel Binational Science Foundation grant 2016850, and the Israeli Ministry of Science and Technology via the Virtual Lab on Artificial Somatosensation for Humans and Humanoids.
Keywords
- dimensionality reduction
- kinematics
- neural networks
- principal component analysis
- prosthetics
- unsupervised learning
ASJC Scopus subject areas
- Bioengineering
- Biotechnology
- Biomedical Engineering
- Histology