Linguistic Grammar Learning and DRD2-TAQ-IA Polymorphism

Patrick C.M. Wong, Marc Ettlinger, Jing Zheng

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

As research into the neurobiology of language has focused primarily on the systems level, fewer studies have examined the link between molecular genetics and normal variations in language functions. Because the ability to learn a language varies in adults and our genetic codes also vary, research linking the two provides a unique window into the molecular neurobiology of language. We consider a candidate association between the dopamine receptor D2 gene (DRD2) and linguistic grammar learning. DRD2-TAQ-IA polymorphism (rs1800497) is associated with dopamine receptor D2 distribution and dopamine impact in the human striatum, such that A1 allele carriers show reduction in D2 receptor binding relative to carriers who are homozygous for the A2 allele. The individual differences in grammatical rule learning that are particularly prevalent in adulthood are also associated with striatal function and its role in domain-general procedural memory. Therefore, we reasoned that procedurally-based grammar learning could be associated with DRD2-TAQ-IA polymorphism. Here, English-speaking adults learned artificial concatenative and analogical grammars, which have been respectively associated with procedural and declarative memory. Language learning capabilities were tested while learners' neural hemodynamic responses were simultaneously measured by fMRI. Behavioral learning and brain activation data were subsequently compared with the learners' DRD2 (rs1800497) genotype. Learners who were homozygous for the A2 allele were better at concatenative (but not analogical) grammar learning and had higher striatal responses relative to those who have at least one A1 allele. These results provide preliminary evidence for the neurogenetic basis of normal variations in linguistic grammar learning and its link to domain-general functions.

Original languageEnglish (US)
Article numbere64983
JournalPloS one
Volume8
Issue number5
DOIs
StatePublished - May 31 2013

Fingerprint

Dopamine D2 Receptors
Linguistics
Polymorphism
learning
Genes
Learning
genetic polymorphism
Language
Alleles
genes
alleles
Corpus Striatum
neurophysiology
Neurobiology
varespladib methyl
Data storage equipment
Hemodynamics
Genetic Code
genetic code
Aptitude

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Wong, Patrick C.M. ; Ettlinger, Marc ; Zheng, Jing. / Linguistic Grammar Learning and DRD2-TAQ-IA Polymorphism. In: PloS one. 2013 ; Vol. 8, No. 5.
@article{a379786ba2bc40579519f5ffd0dfe534,
title = "Linguistic Grammar Learning and DRD2-TAQ-IA Polymorphism",
abstract = "As research into the neurobiology of language has focused primarily on the systems level, fewer studies have examined the link between molecular genetics and normal variations in language functions. Because the ability to learn a language varies in adults and our genetic codes also vary, research linking the two provides a unique window into the molecular neurobiology of language. We consider a candidate association between the dopamine receptor D2 gene (DRD2) and linguistic grammar learning. DRD2-TAQ-IA polymorphism (rs1800497) is associated with dopamine receptor D2 distribution and dopamine impact in the human striatum, such that A1 allele carriers show reduction in D2 receptor binding relative to carriers who are homozygous for the A2 allele. The individual differences in grammatical rule learning that are particularly prevalent in adulthood are also associated with striatal function and its role in domain-general procedural memory. Therefore, we reasoned that procedurally-based grammar learning could be associated with DRD2-TAQ-IA polymorphism. Here, English-speaking adults learned artificial concatenative and analogical grammars, which have been respectively associated with procedural and declarative memory. Language learning capabilities were tested while learners' neural hemodynamic responses were simultaneously measured by fMRI. Behavioral learning and brain activation data were subsequently compared with the learners' DRD2 (rs1800497) genotype. Learners who were homozygous for the A2 allele were better at concatenative (but not analogical) grammar learning and had higher striatal responses relative to those who have at least one A1 allele. These results provide preliminary evidence for the neurogenetic basis of normal variations in linguistic grammar learning and its link to domain-general functions.",
author = "Wong, {Patrick C.M.} and Marc Ettlinger and Jing Zheng",
year = "2013",
month = "5",
day = "31",
doi = "10.1371/journal.pone.0064983",
language = "English (US)",
volume = "8",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "5",

}

Linguistic Grammar Learning and DRD2-TAQ-IA Polymorphism. / Wong, Patrick C.M.; Ettlinger, Marc; Zheng, Jing.

In: PloS one, Vol. 8, No. 5, e64983, 31.05.2013.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Linguistic Grammar Learning and DRD2-TAQ-IA Polymorphism

AU - Wong, Patrick C.M.

AU - Ettlinger, Marc

AU - Zheng, Jing

PY - 2013/5/31

Y1 - 2013/5/31

N2 - As research into the neurobiology of language has focused primarily on the systems level, fewer studies have examined the link between molecular genetics and normal variations in language functions. Because the ability to learn a language varies in adults and our genetic codes also vary, research linking the two provides a unique window into the molecular neurobiology of language. We consider a candidate association between the dopamine receptor D2 gene (DRD2) and linguistic grammar learning. DRD2-TAQ-IA polymorphism (rs1800497) is associated with dopamine receptor D2 distribution and dopamine impact in the human striatum, such that A1 allele carriers show reduction in D2 receptor binding relative to carriers who are homozygous for the A2 allele. The individual differences in grammatical rule learning that are particularly prevalent in adulthood are also associated with striatal function and its role in domain-general procedural memory. Therefore, we reasoned that procedurally-based grammar learning could be associated with DRD2-TAQ-IA polymorphism. Here, English-speaking adults learned artificial concatenative and analogical grammars, which have been respectively associated with procedural and declarative memory. Language learning capabilities were tested while learners' neural hemodynamic responses were simultaneously measured by fMRI. Behavioral learning and brain activation data were subsequently compared with the learners' DRD2 (rs1800497) genotype. Learners who were homozygous for the A2 allele were better at concatenative (but not analogical) grammar learning and had higher striatal responses relative to those who have at least one A1 allele. These results provide preliminary evidence for the neurogenetic basis of normal variations in linguistic grammar learning and its link to domain-general functions.

AB - As research into the neurobiology of language has focused primarily on the systems level, fewer studies have examined the link between molecular genetics and normal variations in language functions. Because the ability to learn a language varies in adults and our genetic codes also vary, research linking the two provides a unique window into the molecular neurobiology of language. We consider a candidate association between the dopamine receptor D2 gene (DRD2) and linguistic grammar learning. DRD2-TAQ-IA polymorphism (rs1800497) is associated with dopamine receptor D2 distribution and dopamine impact in the human striatum, such that A1 allele carriers show reduction in D2 receptor binding relative to carriers who are homozygous for the A2 allele. The individual differences in grammatical rule learning that are particularly prevalent in adulthood are also associated with striatal function and its role in domain-general procedural memory. Therefore, we reasoned that procedurally-based grammar learning could be associated with DRD2-TAQ-IA polymorphism. Here, English-speaking adults learned artificial concatenative and analogical grammars, which have been respectively associated with procedural and declarative memory. Language learning capabilities were tested while learners' neural hemodynamic responses were simultaneously measured by fMRI. Behavioral learning and brain activation data were subsequently compared with the learners' DRD2 (rs1800497) genotype. Learners who were homozygous for the A2 allele were better at concatenative (but not analogical) grammar learning and had higher striatal responses relative to those who have at least one A1 allele. These results provide preliminary evidence for the neurogenetic basis of normal variations in linguistic grammar learning and its link to domain-general functions.

UR - http://www.scopus.com/inward/record.url?scp=84878556084&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878556084&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0064983

DO - 10.1371/journal.pone.0064983

M3 - Article

VL - 8

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 5

M1 - e64983

ER -