TY - JOUR
T1 - Linking short tandem repeat polymorphisms with cytosine modifications in human lymphoblastoid cell lines
AU - Zhang, Zhou
AU - Zheng, Yinan
AU - Zhang, Xu
AU - Liu, Cong
AU - Joyce, Brian Thomas
AU - Kibbe, Warren A.
AU - Hou, Lifang
AU - Zhang, Wei
N1 - Funding Information:
This work was partially supported by grants from the National Institutes of Health: R21HG006367 (to WZ), R21CA187869 (to WZ and LH), and The Robert H. Lurie Comprehensive Cancer Center-Developmental Funds P30CA060553 (to WZ).
Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - Inter-individual variation in cytosine modifications has been linked to complex traits in humans. Cytosine modification variation is partially controlled by single nucleotide polymorphisms (SNPs), known as modified cytosine quantitative trait loci (mQTL). However, little is known about the role of short tandem repeat polymorphisms (STRPs), a class of structural genetic variants, in regulating cytosine modifications. Utilizing the published data on the International HapMap Project lymphoblastoid cell lines (LCLs), we assessed the relationships between 721 STRPs and the modification levels of 283,540 autosomal CpG sites. Our findings suggest that, in contrast to the predominant cis-acting mode for SNP-based mQTL, STRPs are associated with cytosine modification levels in both cis-acting (local) and trans-acting (distant) modes. In local scans within the ±1 Mb windows of target CpGs, 21, 9, and 21 cis-acting STRP-based mQTL were detected in CEU (Caucasian residents from Utah, USA), YRI (Yoruba people from Ibadan, Nigeria), and the combined samples, respectively. In contrast, 139,420, 76,817, and 121,866 trans-acting STRP-based mQTL were identified in CEU, YRI, and the combined samples, respectively. A substantial proportion of CpG sites detected with local STRP-based mQTL were not associated with SNP-based mQTL, suggesting that STRPs represent an independent class of mQTL. Functionally, genetic variants neighboring CpG-associated STRPs are enriched with genome-wide association study (GWAS) loci for a variety of complex traits and diseases, including cancers, based on the National Human Genome Research Institute (NHGRI) GWAS Catalog. Therefore, elucidating these STRP-based mQTL in addition to SNP-based mQTL can provide novel insights into the genetic architectures of complex traits.
AB - Inter-individual variation in cytosine modifications has been linked to complex traits in humans. Cytosine modification variation is partially controlled by single nucleotide polymorphisms (SNPs), known as modified cytosine quantitative trait loci (mQTL). However, little is known about the role of short tandem repeat polymorphisms (STRPs), a class of structural genetic variants, in regulating cytosine modifications. Utilizing the published data on the International HapMap Project lymphoblastoid cell lines (LCLs), we assessed the relationships between 721 STRPs and the modification levels of 283,540 autosomal CpG sites. Our findings suggest that, in contrast to the predominant cis-acting mode for SNP-based mQTL, STRPs are associated with cytosine modification levels in both cis-acting (local) and trans-acting (distant) modes. In local scans within the ±1 Mb windows of target CpGs, 21, 9, and 21 cis-acting STRP-based mQTL were detected in CEU (Caucasian residents from Utah, USA), YRI (Yoruba people from Ibadan, Nigeria), and the combined samples, respectively. In contrast, 139,420, 76,817, and 121,866 trans-acting STRP-based mQTL were identified in CEU, YRI, and the combined samples, respectively. A substantial proportion of CpG sites detected with local STRP-based mQTL were not associated with SNP-based mQTL, suggesting that STRPs represent an independent class of mQTL. Functionally, genetic variants neighboring CpG-associated STRPs are enriched with genome-wide association study (GWAS) loci for a variety of complex traits and diseases, including cancers, based on the National Human Genome Research Institute (NHGRI) GWAS Catalog. Therefore, elucidating these STRP-based mQTL in addition to SNP-based mQTL can provide novel insights into the genetic architectures of complex traits.
UR - http://www.scopus.com/inward/record.url?scp=84954368845&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954368845&partnerID=8YFLogxK
U2 - 10.1007/s00439-015-1628-4
DO - 10.1007/s00439-015-1628-4
M3 - Article
C2 - 26714498
AN - SCOPUS:84954368845
VL - 135
SP - 223
EP - 232
JO - Human Genetics
JF - Human Genetics
SN - 0340-6717
IS - 2
ER -