Lipopolysaccharide domains modulate urovirulence

Lizath M. Aguiniga, Ryan E. Yaggie, Anthony J. Schaeffer, David J. Klumpp*

*Corresponding author for this work

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

Uropathogenic Escherichia coli (UPEC) accounts for 80 to 90% of urinary tract infections (UTI), and the increasing rate of antibiotic resistance among UPEC isolates reinforces the need for vaccines to prevent UTIs and recurrent infections. Previous studies have shown that UPEC isolate NU14 suppresses proinflammatory NF-κB-dependent cytokines (D. J. Klumpp, A. C. Weiser, S. Sengupta, S. G. Forrestal, R. A. Batler, and A. J. Schaeffer, Infect Immun 69:6689-6695, 2001, http://dx.doi.org/10.1128/IAI.69.11 .6689-6695.2001; B. K. Billips, A. J. Schaeffer, and D. J. Klumpp, Infect Immun 76:3891-3900, 2008, http://dx.doi.org/10.1128 /IAI.00069-08). However, modification of lipopolysaccharide (LPS) structure by deleting the O-antigen ligase gene (waaL) enhanced proinflammatory cytokine secretion. Vaccination with the ΔwaaL mutant diminished NU14 reservoirs and protected against subsequent infections. Therefore, we hypothesized that LPS structural determinants shape immune responses. We evaluated the contribution of LPS domains to urovirulence corresponding to the inner core (waaP, waaY, and rfaQ), outer core (rfaG), and O-antigen (waaL, wzzE, and wzyE). Deletion of waaP, waaY, and rfaG attenuated adherence to urothelial cells in vitro. In a murine UTI model, the ΔrfaG mutant had the most severe defect in colonization. The mutation of rfaG, waaL, wzzE, and wzyE resulted in an inability to form reservoirs in mouse bladders. Infection with the LPS mutant panel resulted in various levels of urinary myeloperoxidase. Since the ΔwaaL mutant promoted Th1-associated adaptive responses in previous studies (B. K. Billips, R. E. Yaggie, J. P. Cashy, A. J. Schaeffer, and D. J. Klumpp, J Infect Dis 200:263-272, 2009, http://dx.doi.org /10.1086/599839), we assessed NU14 for Th2-associated cytokines. We found NU14 infection stimulated TLR4-dependent bladder interleukin-33 (IL-33) production. Inoculation with rfaG, waaL, wzzE, and wzyE mutants showed decreased IL-33 production. We quantified antigen-specific antibodies after infection and found significantly increased IgE and IgG1 in ΔwaaP mutant-infected mice. Our studies show LPS structural constituents mediate multiple aspects of the UPEC life cycle, including the ability to acutely colonize bladders, form reservoirs, and evoke innate and adaptive immune responses.

Original languageEnglish (US)
Pages (from-to)3131-3140
Number of pages10
JournalInfection and immunity
Volume84
Issue number11
DOIs
StatePublished - Jan 1 2016

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Lipopolysaccharide domains modulate urovirulence'. Together they form a unique fingerprint.

  • Cite this