Liquid exfoliation of layered materials

Valeria Nicolosi, Manish Chhowalla, Mercouri G. Kanatzidis, Michael S. Strano, Jonathan N. Coleman*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

2212 Scopus citations


Not all crystals form atomic bonds in three dimensions. Layered crystals, for instance, are those that form strong chemical bonds in-plane but display weak out-of-plane bonding. This allows them to be exfoliated into so-called nanosheets, which can be micrometers wide but less than a nanometer thick. Such exfoliation leads to materials with extraordinary values of crystal surface area, in excess of 1000 square meters per gram. This can result in dramatically enhanced surface activity, leading to important applications, such as electrodes in supercapacitors or batteries. Another result of exfoliation is quantum confinement of electrons in two dimensions, transforming the electron band structure to yield new types of electronic and magnetic materials. Exfoliated materials also have a range of applications in composites as molecularly thin barriers or as reinforcing or conductive fillers. Here, we review exfoliation - especially in the liquid phase - as a transformative process in material science, yielding new and exotic materials, which are radically different from their bulk, layered counterparts.

Original languageEnglish (US)
Article number1226419
Issue number6139
StatePublished - 2013

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Liquid exfoliation of layered materials'. Together they form a unique fingerprint.

Cite this