Liquid gallium cooling of silicon crystals in high intensity photon beams (invited)

R. K. Smither*, G. A. Forster, D. H. Bilderback, M. Bedzyk, K. Finkelstein, C. Henderson, J. White, L. E. Berman, P. Stefan, T. Oversluizen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1-10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator. Tests were performed on two new Ga-cooled Si crystals and compared with the standard water-cooled Si crystal. One of the crystals had cooling channels at two levels in the crystal that allowed one to actively control the shape of the crystal surface. The second one had rectangular cooling channels located just beneath the diffraction surface. Both crystals showed major improvements over the water-cooled crystal.

Original languageEnglish (US)
Pages (from-to)1486-1492
Number of pages7
JournalReview of Scientific Instruments
Volume60
Issue number7
DOIs
StatePublished - 1989

ASJC Scopus subject areas

  • Instrumentation

Fingerprint

Dive into the research topics of 'Liquid gallium cooling of silicon crystals in high intensity photon beams (invited)'. Together they form a unique fingerprint.

Cite this