TY - JOUR
T1 - Local and Global Stretching of Polymer Chains during Startup of Extensional Flow
AU - López-Barrón, Carlos R.
AU - Burghardt, Wesley R.
AU - Kweon, Mu Sung
N1 - Publisher Copyright:
Copyright © 2019 American Chemical Society.
PY - 2020/1/21
Y1 - 2020/1/21
N2 - The nonlinear rheological response to extensional flows in entangled polymers is related to the segmental chain stretching and to the chemical identity of the monomeric units. The latter has a strong effect on the drag coefficients, and therefore, quantification of molecular conformation changes in the subnanometer scale (at the monomer level) are crucial to fully understand nonlinear viscoelastic behavior in polymer melts. We report in situ time-resolved extensional rheo-small-angle neutron scattering (tEr-SANS) and wide-angle X-ray scattering (tEr-WAXS) during startup of uniaxial flow on a monodisperse polystyrene melt. Flow-induced segmental alignment was quantified with tEr-SANS, whereas local alignment of the backbone-backbone and phenyl-phenyl interactions were measured with tEr-WAXS. Linear relations between the three alignment factors and stress were observed at low stresses, which confirmed the validity of simple stress-SANS and stress-WAXS rules (SSR and SWR, respectively). Significant differences in SSR and SWR coefficients, as well as the stress values for failure of the two rules suggest very different correlations between global (at the segmental level) and local (at the monomer level) conformations with stress.
AB - The nonlinear rheological response to extensional flows in entangled polymers is related to the segmental chain stretching and to the chemical identity of the monomeric units. The latter has a strong effect on the drag coefficients, and therefore, quantification of molecular conformation changes in the subnanometer scale (at the monomer level) are crucial to fully understand nonlinear viscoelastic behavior in polymer melts. We report in situ time-resolved extensional rheo-small-angle neutron scattering (tEr-SANS) and wide-angle X-ray scattering (tEr-WAXS) during startup of uniaxial flow on a monodisperse polystyrene melt. Flow-induced segmental alignment was quantified with tEr-SANS, whereas local alignment of the backbone-backbone and phenyl-phenyl interactions were measured with tEr-WAXS. Linear relations between the three alignment factors and stress were observed at low stresses, which confirmed the validity of simple stress-SANS and stress-WAXS rules (SSR and SWR, respectively). Significant differences in SSR and SWR coefficients, as well as the stress values for failure of the two rules suggest very different correlations between global (at the segmental level) and local (at the monomer level) conformations with stress.
UR - http://www.scopus.com/inward/record.url?scp=85076734689&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076734689&partnerID=8YFLogxK
U2 - 10.1021/acsmacrolett.9b00772
DO - 10.1021/acsmacrolett.9b00772
M3 - Article
C2 - 35638655
AN - SCOPUS:85076734689
SN - 2161-1653
VL - 9
SP - 26
EP - 31
JO - ACS Macro Letters
JF - ACS Macro Letters
IS - 1
ER -