Abstract
KSb5S8 and its solid solution analogs with Rb and Tl were found to exhibit a reversible and tunable glass→crystal→glass phase transition. Selected members of this series were analyzed by differential scanning calorimetry to measure the effect of the substitution on the thermal properties. The solid solutions K1-xRbxSb5S8 exhibited clear deviations in melting and crystallization behavior and temperatures from the parent structure. The crystallization process of the glassy KSb5S8 as a function of temperature could clearly be followed with Raman spectroscopy. The thermal conductivity of both glassy and crystalline KSb5S8 at room temperature is ∼0.40 W/m K, among the lowest known values for any dense solid-state material. Electronic band structure calculations carried out on KSb5S8 and TlSb5S8 show the presence of large indirect band-gaps and confirm the coexistence of covalent Sb-S bonding and predominantly ionic K(Tl)⋯S bonding. Pair distribution function analyses based on total X-ray scattering data on both crystalline and glassy K1-xRbxSb5S8 showed that the basic structure-defining unit is the same and it involves a distorted polyhedron of "SbS7" fragment of ∼7 Å diameter. The similarity of local structure between the glassy and crystalline phases accounts for the facile crystallization rate in this system.
Original language | English (US) |
---|---|
Pages (from-to) | 420-431 |
Number of pages | 12 |
Journal | Journal of Solid State Chemistry |
Volume | 180 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2007 |
Keywords
- Glasses
- Non-volatile memory
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Physical and Theoretical Chemistry
- Inorganic Chemistry
- Materials Chemistry