Abstract
Reactive oxygen species (ROS) are important mediators for VEGF receptor 2 (VEGFR2) signalling involved in angiogenesis. The initial product of Cys oxidation, cysteine sulfenic acid (Cys-OH), is a key intermediate in redox signal transduction; however, its role in VEGF signalling is unknown. We have previously demonstrated IQGAP1 as a VEGFR2 binding scaffold protein involved in ROS-dependent EC migration and post-ischemic angiogenesis. Using a biotin-labelled Cys-OH trapping reagent, we show that VEGF increases protein-Cys-OH formation at the lamellipodial leading edge where it co-localizes with NADPH oxidase and IQGAP1 in migrating ECs, which is prevented by IQGAP1 siRNA or trapping of Cys-OH with dimedone. VEGF increases IQGAP1-Cys-OH formation, which is prevented by N-acetyl cysteine or dimedone, which inhibits VEGF-induced EC migration and capillary network formation. In vivo, hindlimb ischemia in mice increases Cys-OH formation in small vessels and IQGAP1 in ischemic tissues. In summary, VEGF stimulates localized formation of Cys-OH-IQGAP1 at the leading edge, thereby promoting directional EC migration, which may contribute to post-natal angiogenesis in vivo. Thus, targeting Cys-oxidized proteins at specific compartments may be the potential therapeutic strategy for various angiogenesis-dependent diseases.
Original language | English (US) |
---|---|
Pages (from-to) | 1124-1135 |
Number of pages | 12 |
Journal | Free Radical Research |
Volume | 45 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2011 |
Funding
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper. This research was supported by National Institutes of Health (NIH) R01 Heart and Lung (HL)077524 and HL077524-S1 (to M.U.-F.), HL070187 (to T.F.), CA126659 (to L.B.P.), American Heart Association (AHA) Grant-In-Aid 0755805Z (to M.U.-F.) and AHA National Center Research Program (NCRP) Innovative Research Grant 0970336N (to M.U.-F), AHA Post-doctoral Fellowship 09POST2250151 (to N.U.), Ruth L. Kirschstein-National Service Research Award (Kirschstein-NRSA) T32 Training Grant (NK and
Keywords
- Angiogenesis
- Cell motility
- Endothelial cells
- NADPH oxidase
- Reactive oxygen species (ROS)
- Redox signalling
- Sulfenic acid
- Vascular endothelial growth factor
ASJC Scopus subject areas
- Biochemistry