### Abstract

This manuscript introduces a methodology (within the Born-Oppenheimer picture) to compute electronic ground-state properties of molecules and solids/surfaces with fractionally occupied components. Given a user-defined division of the molecule into subsystems, our theory uses an auxiliary global Hamiltonian that is defined as the sum of subsystem Hamiltonians, plus the spatial integral of a second-quantized local operator that allows the electrons to be transferred between subsystems. This electron transfer operator depends on a local potential that can be determined using density functional approximations and/or other techniques such as machine learning. The present framework employs superpositions of tensor-product wave functions, which can satisfy size consistency and avoid spurious fractional charges at large bond distances. The electronic population of each subsystem is in general a positive real number and is obtained from wave-function amplitudes, which are calculated by means of ground-state matrix diagonalization (or matrix propagation in the time-dependent case). Our method can provide pathways to explore charge-transfer effects in environments where dividing the molecule into subsystems is convenient and to develop computationally affordable electronic structure algorithms.

Original language | English (US) |
---|---|

Article number | 034105 |

Journal | Journal of Chemical Physics |

Volume | 149 |

Issue number | 3 |

DOIs | |

State | Published - Jul 21 2018 |

### Fingerprint

### ASJC Scopus subject areas

- Physics and Astronomy(all)
- Physical and Theoretical Chemistry