Abstract
We introduce a new, reliable, and agnostic uncertainty measure for classification tasks called logit uncertainty. It is based on logit outputs of neural networks. We in particular show that this new uncertainty measure yields a superior performance compared to existing uncertainty measures on different tasks, including out of sample detection and finding erroneous predictions. We analyze theoretical foundations of the measure and explore a relationship with high density regions. We also demonstrate how to test uncertainty using intermediate outputs in training of generative adversarial networks. We propose two potential ways to utilize logit-based uncertainty in real world applications, and show that the uncertainty measure outperforms.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021 |
Editors | Yixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 948-956 |
Number of pages | 9 |
ISBN (Electronic) | 9781665439022 |
DOIs | |
State | Published - 2021 |
Event | 2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, United States Duration: Dec 15 2021 → Dec 18 2021 |
Publication series
Name | Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021 |
---|
Conference
Conference | 2021 IEEE International Conference on Big Data, Big Data 2021 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 12/15/21 → 12/18/21 |
Funding
We thank the Google Cloud Platform research credit program for the research credits.
Keywords
- classification
- machine learning
- uncertainty
ASJC Scopus subject areas
- Information Systems and Management
- Artificial Intelligence
- Computer Vision and Pattern Recognition
- Information Systems