Abstract
Short-range and long-range photoreactions between ethidium and DNA have been characterized. While no DNA reaction is observed upon excitation into the visible absorption band of ethidium, higher-energy irradiation (313-340 nm) leads both to direct strand cleavage at the 5'-G of 5'-GG-3' doublets and to pipendine-sensitive lesions at guanine. This reactivity is not consistent with oxidation of guanine by either electron transfer or singlet oxygen as shown by comparison with reactions of a rhodium intercalator and methylene blue, respectively. By covalently tethering ethidium to one end of a DNA duplex, we demonstrate the presence of two distinct reactions, one short- range and the other long-range. The short-range reaction involves a covalent modification of guanine by ethidium, based upon HPLC analysis of the nucleoside products and studies with ethidium derivatives. The long-range reaction is entirely consistent with oxidation of guanine by DNA-mediated electron transfer. The yield of this electron-transfer reaction is not attenuated with distance; equal yields of guanine damage are observed at a proximal (17 Å Et - GG separation) and distal (44 Å, Et - GG separation) site. These results are quite similar to those previously observed with a covalently tethered rhodium photooxidant and underscore the unique ability of the DNA base stack to facilitate long-range electron transfer so as to effect oxidative damage from a distance.
Original language | English (US) |
---|---|
Pages (from-to) | 15933-15940 |
Number of pages | 8 |
Journal | Biochemistry |
Volume | 37 |
Issue number | 45 |
DOIs | |
State | Published - Nov 10 1998 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry