TY - JOUR
T1 - Long-term effect of Trigonella foenum graecum and its combination with sodium orthovanadate in preventing histopathological and biochemical abnormalities in diabetic rat ocular tissues
AU - Preet, Anju
AU - Siddiqui, M. R.
AU - Taha, A.
AU - Badhai, J.
AU - Hussain, M. E.
AU - Yadava, P. K.
AU - Baquer, N. Z.
N1 - Funding Information:
A. Preet, M.R. Siddiqui and A. Taha are recipients of the Senior Research Fellowship from the Council of Scientific and Industrial Research (CSIR), Indian Council of Medical Research (ICMR) and University Grant Commission (UGC), India respectively. Profs. P.K. Yadava and N.Z. Baquer acknowledge financial assistance received from CSIR, DST and ICMR, Govt. of India.
PY - 2006/9
Y1 - 2006/9
N2 - Trigonella foenum graecum seed powder (TSP) and Sodium Orthovanadate (SOV) have been shown to demonstrate antidiabetic effects by stabilizing glucose homeostasis and carbohydrate metabolism in experimental type-1 diabetes. However their efficacy in controlling histopathological and biochemical abnormalities in ocular tissues associated with diabetic retinopathy is not known. The purpose of this study was to investigate the comparative efficacy of individual as well as combination therapy of TSP and SOV in 8 weeks diabetic rat lens and retina. Retinas and lenses were taken from control, alloxan-induced diabetic rats and diabetic rats treated separately with insulin, 5%TSP, SOV (0.6 mg/ml) and a combined dose of SOV (0.2 mg/ml) and 5%TSP for 60 days. Control and each experimental group had six rats. Alterations in the activities of enzymes HK (hexokinase), AR (aldose reductase), SDH (sorbitol dehydrogenase), G-6-PD (glucose-6-phosphate dehydrogenase), GPx (glutathione peroxidase), GR (glutathione reductase) and levels of metabolites like sorbitol, fructose, glucose, MDA (malondialdehyde) and GSH (reduced glutathione) were measured in the cytosolic fraction of lenses besides measuring blood glucose levels and glycosylated haemoglobin. Histopathological abnormalities were studied in the lens using photomicrography and retina using transmission electron microscopy. Blood glucose, glycosylated haemoglobin levels and polyol pathway enzymes AR and SDH increased significantly causing accumulation of sorbitol and fructose in the diabetic lens and treatment with SOV and TSP significantly (p < 0.05) decreased these to control levels. Similarly, SOV and TSP treatments modulated the activities of HK, G-6-PD, GPx and GR in the rat lens to control values. Ultrastructure of the diabetic retina revealed disintegration of the inner nuclear layer cells with reduction in rough endoplasmic reticulum and swelling of mitochondria in the bipolar cells; and these histopathological events were effectively restored to control state by SOV and TSP treatments. In this study SOV and TSP effectively controlled ocular histopathological and biochemical abnormalities associated with experimental type-1 diabetes, and a combination regimen of low dose of SOV with TSP demonstrated the most significant effect. In conclusion, the potential of SOV and TSP alone or in low dose combination may be considered as promising approaches for the prevention of diabetic retinopathy and other ocular disorders.
AB - Trigonella foenum graecum seed powder (TSP) and Sodium Orthovanadate (SOV) have been shown to demonstrate antidiabetic effects by stabilizing glucose homeostasis and carbohydrate metabolism in experimental type-1 diabetes. However their efficacy in controlling histopathological and biochemical abnormalities in ocular tissues associated with diabetic retinopathy is not known. The purpose of this study was to investigate the comparative efficacy of individual as well as combination therapy of TSP and SOV in 8 weeks diabetic rat lens and retina. Retinas and lenses were taken from control, alloxan-induced diabetic rats and diabetic rats treated separately with insulin, 5%TSP, SOV (0.6 mg/ml) and a combined dose of SOV (0.2 mg/ml) and 5%TSP for 60 days. Control and each experimental group had six rats. Alterations in the activities of enzymes HK (hexokinase), AR (aldose reductase), SDH (sorbitol dehydrogenase), G-6-PD (glucose-6-phosphate dehydrogenase), GPx (glutathione peroxidase), GR (glutathione reductase) and levels of metabolites like sorbitol, fructose, glucose, MDA (malondialdehyde) and GSH (reduced glutathione) were measured in the cytosolic fraction of lenses besides measuring blood glucose levels and glycosylated haemoglobin. Histopathological abnormalities were studied in the lens using photomicrography and retina using transmission electron microscopy. Blood glucose, glycosylated haemoglobin levels and polyol pathway enzymes AR and SDH increased significantly causing accumulation of sorbitol and fructose in the diabetic lens and treatment with SOV and TSP significantly (p < 0.05) decreased these to control levels. Similarly, SOV and TSP treatments modulated the activities of HK, G-6-PD, GPx and GR in the rat lens to control values. Ultrastructure of the diabetic retina revealed disintegration of the inner nuclear layer cells with reduction in rough endoplasmic reticulum and swelling of mitochondria in the bipolar cells; and these histopathological events were effectively restored to control state by SOV and TSP treatments. In this study SOV and TSP effectively controlled ocular histopathological and biochemical abnormalities associated with experimental type-1 diabetes, and a combination regimen of low dose of SOV with TSP demonstrated the most significant effect. In conclusion, the potential of SOV and TSP alone or in low dose combination may be considered as promising approaches for the prevention of diabetic retinopathy and other ocular disorders.
KW - Diabetes
KW - Lens
KW - Polyol pathway
KW - Sodium orthovanadate
KW - Trigonella foenum graecum
UR - http://www.scopus.com/inward/record.url?scp=33748306020&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748306020&partnerID=8YFLogxK
U2 - 10.1007/s11010-006-9156-0
DO - 10.1007/s11010-006-9156-0
M3 - Article
C2 - 16718375
AN - SCOPUS:33748306020
SN - 0300-8177
VL - 289
SP - 137
EP - 147
JO - Molecular and Cellular Biochemistry
JF - Molecular and Cellular Biochemistry
IS - 1-2
ER -