Abstract
TGFβ has both tumor suppressive and tumor promoting effects in colon cancer. Also, TGFβ can affect the extent and composition of inflammatory cells present in tumors, contextually promoting and inhibiting inflammation. While colon tumors display intratumoral inflammation, the contributions of TGFβ to this process are poorly understood. In human patients, we found that epithelial loss of TGFβ signaling was associated with increased inflammatory burden; yet overexpression of TGFβ was also associated with increased inflammation. These findings were recapitulated in mutant APC models of murine tumorigenesis, where epithelial truncation of TGFBR2 led to lethal inflammatory disease and invasive colon cancer, mediated by IL8 and TGFβ1. Interestingly, mutant APC mice with global suppression of TGFβ signals displayed an intermediate phenotype, presenting with an overall increase in IL8-mediated inflammation and accelerated tumor formation, yet with a longer latency to the onset of disease observed in mice with epithelial TGFBR-deficiency. These results suggest that the loss of TGFβ signaling, particularly in colon epithelial cells, elicits a strong inflammatory response and promotes tumor progression. This implies that treating colon cancer patients with TGFβ inhibitors may result in a worse outcome by enhancing inflammatory responses.
Original language | English (US) |
---|---|
Pages (from-to) | 3826-3839 |
Number of pages | 14 |
Journal | Oncotarget |
Volume | 8 |
Issue number | 3 |
DOIs | |
State | Published - 2017 |
Funding
The authors wish to thank Dr. Olga Volpert for use of her fluorescent microscope, as well as Dr. David Gius for the generous use of his antibodies and valuable insight into our figures. We also thank undergraduate student Hanah L. Miller for proofreading the manuscript. This work was supported by the Barnum and Zell Family Foundations at Northwestern University to PJ Grippo, and by NIH R01CA141057 to B Jung.
Keywords
- Colon cancer
- Inflammation
- TGF-beta
ASJC Scopus subject areas
- Oncology