Low-pressure metalorganic chemical vapor deposition of high-quality AlN and GaN thin films on sapphire and silicon substrates

Patrick Kung*, X. Zhang, Erwan Bigan, Manijeh Razeghi, A. Saxler

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

High quality AlN and GaN epilayers have been grown on basal plane sapphire by low pressure metalorganic chemical vapor deposition. The X-ray rocking curve linewidth of the AlN and GaN films were about 100 and 30 arcsecs respectively. Sharp absorption edges were determined at 6.1 and 3.4 eV respectively. Successful donor- bound excitonic luminescence emissions were detected for GaN films grown on sapphire and silicon. Two additional lines at 3.37 and 3.31 eV were observed on GaN on sapphire and assumed to be impurity-related. Doping of GaN layers was achieved with magnesium. Mg-related photoluminescence emissions were successfully detected on as-grown samples, without any post- growth treatment.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
PublisherSociety of Photo-Optical Instrumentation Engineers
Pages311-320
Number of pages10
ISBN (Print)0819417440, 9780819417442
DOIs
StatePublished - Jan 1 1995
EventOptoelectronic Integrated Circuit Materials, Physics, and Devices - San Jose, CA, USA
Duration: Feb 6 1995Feb 9 1995

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume2397
ISSN (Print)0277-786X

Other

OtherOptoelectronic Integrated Circuit Materials, Physics, and Devices
CitySan Jose, CA, USA
Period2/6/952/9/95

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Low-pressure metalorganic chemical vapor deposition of high-quality AlN and GaN thin films on sapphire and silicon substrates'. Together they form a unique fingerprint.

Cite this