TY - JOUR
T1 - Lower bounds on Ricci curvature and quantitative behavior of singular sets
AU - Cheeger, Jeff
AU - Naber, Aaron
PY - 2013/2
Y1 - 2013/2
N2 - Let Yn denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with RicMni ≥ - (n - 1). The singular set S ⊂ Y has a stratification S ⊂ S ⊂. ⊂S, where y ∈S if no tangent cone at y splits off a factor ℝk+1 isometrically. Here, we define for all η> 0, 0 < r ≤ 1, the k-th effective singular stratum Xη,rk satisfying ∪η ∩r Sn,rk = Sk. Sharpening the known Hausdorff dimension bound dim Sk ≤k, we prove that for all y, the volume of the r-tubular neighborhood of Sη,rk satisfies Vol(Tr(Sη,rk) ∩ B1/2(y)) ≤C(n,v,η)rn-k-η. The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let Br denote the set of points at which the C2-harmonic radius is ≤r. If also the Min are Kähler-Einstein with L2 curvature bound, {double pipe}Rm{double pipe}L2 ≤ C, then Vol(Br ∩B 1/2(y)) ≤c(n,v,C)r for all y. In the Kähler-Einstein case, without assuming any integral curvature bound on the Min, we obtain a slightly weaker volume bound on Br which yields an a priori Lp curvature bound for all p <2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.
AB - Let Yn denote the Gromov-Hausdorff limit of v-noncollapsed Riemannian manifolds with RicMni ≥ - (n - 1). The singular set S ⊂ Y has a stratification S ⊂ S ⊂. ⊂S, where y ∈S if no tangent cone at y splits off a factor ℝk+1 isometrically. Here, we define for all η> 0, 0 < r ≤ 1, the k-th effective singular stratum Xη,rk satisfying ∪η ∩r Sn,rk = Sk. Sharpening the known Hausdorff dimension bound dim Sk ≤k, we prove that for all y, the volume of the r-tubular neighborhood of Sη,rk satisfies Vol(Tr(Sη,rk) ∩ B1/2(y)) ≤C(n,v,η)rn-k-η. The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let Br denote the set of points at which the C2-harmonic radius is ≤r. If also the Min are Kähler-Einstein with L2 curvature bound, {double pipe}Rm{double pipe}L2 ≤ C, then Vol(Br ∩B 1/2(y)) ≤c(n,v,C)r for all y. In the Kähler-Einstein case, without assuming any integral curvature bound on the Min, we obtain a slightly weaker volume bound on Br which yields an a priori Lp curvature bound for all p <2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.
UR - http://www.scopus.com/inward/record.url?scp=84872778967&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872778967&partnerID=8YFLogxK
U2 - 10.1007/s00222-012-0394-3
DO - 10.1007/s00222-012-0394-3
M3 - Article
AN - SCOPUS:84872778967
SN - 0020-9910
VL - 191
SP - 321
EP - 339
JO - Inventiones Mathematicae
JF - Inventiones Mathematicae
IS - 2
ER -