TY - JOUR
T1 - LY 294002, an inhibitor of phosphatidylinositol 3-kinase, inhibits GH-mediated expression of the IGF-I gene in rat hepatocytes
AU - Shoba, Lungile N.N.
AU - Newman, Marsha
AU - Liu, Wenli
AU - Lowe, William L.
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2001
Y1 - 2001
N2 - The signal transduction pathways that mediate GH-dependent regulation of IGF-I gene expression remain poorly defined. To establish a GH-responsive in vitro model system to study the effect of GH on the expression of the endogenous IGF-I gene, primary hepatocytes from adult male rats were prepared. These cells expressed both the GH receptor and the IGF-I gene, as demonstrated using a ribonuclease protection assay. Western blot analyses using antibodies directed against the phosphorylated forms of the ERKs, signal transducer and activator of transcription-5, and Akt/protein kinase B, a protein kinase that is downstream of PI3K, demonstrated GH-dependent phosphorylation of these signaling molecules. These signaling molecules are components of the major signal transduction pathways that are activated by GH. To determine whether GH-responsive IGF-I gene expression could be demonstrated in these cells, hepatocytes were treated without or with 50 ng/ml GH for 3-48 h. IGF-I mRNA levels increased within 3 h, and a maximal 2.2-fold increase was observed after 24 h of GH treatment. To determine whether ERK activation contributes to GH-induced IGF-I gene expression, hepatocytes were treated for 12 h without or with 50 ng/ml GH and 50 μM PD98059, an inhibitor of MAPK kinase-1 and -2. Treatment with PD98059 did not have a significant effect on GH-induced IGF-I gene expression. Similar studies were performed using 50 μM LY 294002, an inhibitor of PI3K. These studies demonstrated that treatment with LY 294002 completely abrogated GH-induced IGF-I gene expression. In contrast, PI3K-specific doses of another inhibitor of PI3K, wortmannin, failed to inhibit the GH-induced increase in IGF-I mRNA levels. In summary, rat hepatocytes in primary culture provide a good model system to study GH-induced IGF-I gene expression, and the results of these studies suggest that a signaling pathway inhibited by LY 294002, possibly a PI3K-dependent pathway, is important for GH-stimulated IGF-I gene expression in hepatocytes.
AB - The signal transduction pathways that mediate GH-dependent regulation of IGF-I gene expression remain poorly defined. To establish a GH-responsive in vitro model system to study the effect of GH on the expression of the endogenous IGF-I gene, primary hepatocytes from adult male rats were prepared. These cells expressed both the GH receptor and the IGF-I gene, as demonstrated using a ribonuclease protection assay. Western blot analyses using antibodies directed against the phosphorylated forms of the ERKs, signal transducer and activator of transcription-5, and Akt/protein kinase B, a protein kinase that is downstream of PI3K, demonstrated GH-dependent phosphorylation of these signaling molecules. These signaling molecules are components of the major signal transduction pathways that are activated by GH. To determine whether GH-responsive IGF-I gene expression could be demonstrated in these cells, hepatocytes were treated without or with 50 ng/ml GH for 3-48 h. IGF-I mRNA levels increased within 3 h, and a maximal 2.2-fold increase was observed after 24 h of GH treatment. To determine whether ERK activation contributes to GH-induced IGF-I gene expression, hepatocytes were treated for 12 h without or with 50 ng/ml GH and 50 μM PD98059, an inhibitor of MAPK kinase-1 and -2. Treatment with PD98059 did not have a significant effect on GH-induced IGF-I gene expression. Similar studies were performed using 50 μM LY 294002, an inhibitor of PI3K. These studies demonstrated that treatment with LY 294002 completely abrogated GH-induced IGF-I gene expression. In contrast, PI3K-specific doses of another inhibitor of PI3K, wortmannin, failed to inhibit the GH-induced increase in IGF-I mRNA levels. In summary, rat hepatocytes in primary culture provide a good model system to study GH-induced IGF-I gene expression, and the results of these studies suggest that a signaling pathway inhibited by LY 294002, possibly a PI3K-dependent pathway, is important for GH-stimulated IGF-I gene expression in hepatocytes.
UR - http://www.scopus.com/inward/record.url?scp=0034870176&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034870176&partnerID=8YFLogxK
U2 - 10.1210/endo.142.9.8394
DO - 10.1210/endo.142.9.8394
M3 - Article
C2 - 11517177
AN - SCOPUS:0034870176
SN - 0013-7227
VL - 142
SP - 3980
EP - 3986
JO - Endocrinology
JF - Endocrinology
IS - 9
ER -