MACHINE LEARNING FOR ELLIPTIC PDES: FAST RATE GENERALIZATION BOUND, NEURAL SCALING LAW AND MINIMAX OPTIMALITY

Yiping Lu, Haoxuan Chen, Jianfeng Lu, Lexing Ying, Jose Blanchet

Research output: Contribution to conferencePaperpeer-review

13 Scopus citations

Abstract

In this paper, we study the statistical limits of deep learning techniques for solving elliptic partial differential equations (PDEs) from random samples using the Deep Ritz Method (DRM) and Physics-Informed Neural Networks (PINNs). To simplify the problem, we focus on a prototype elliptic PDE: the Schrödinger equation on a hypercube with zero Dirichlet boundary condition, which is applied in quantum-mechanical systems. We establish upper and lower bounds for both methods, which improve upon concurrently developed upper bounds for this problem via a fast rate generalization bound. We discover that the current Deep Ritz Method is sub-optimal and propose a modified version of it. We also prove that PINN and the modified version of DRM can achieve minimax optimal bounds over Sobolev spaces. Empirically, following recent work which has shown that the deep model accuracy will improve with growing training sets according to a power law, we supply computational experiments to show similar-behavior of dimension dependent power law for deep PDE solvers.

Original languageEnglish (US)
StatePublished - 2022
Event10th International Conference on Learning Representations, ICLR 2022 - Virtual, Online
Duration: Apr 25 2022Apr 29 2022

Conference

Conference10th International Conference on Learning Representations, ICLR 2022
CityVirtual, Online
Period4/25/224/29/22

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'MACHINE LEARNING FOR ELLIPTIC PDES: FAST RATE GENERALIZATION BOUND, NEURAL SCALING LAW AND MINIMAX OPTIMALITY'. Together they form a unique fingerprint.

Cite this