Abstract
CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale array of Li2MoO4 (LMO) cryogenic calorimeters with double readout of heat and light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino masses in the search for neutrinoless double beta decay of 100Mo. Pile-up of standard double beta decay of the candidate isotope is a relevant background. We generate pile-up heat events via injection of Joule heater pulses with a programmable waveform generator in a small array of LMO crystals operated underground in the Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and control both time difference and underlying amplitudes of individual heat pulses in the data. We present the performance of supervised learning classifiers on data and the attained pile-up rejection efficiency.
Original language | English (US) |
---|---|
Pages (from-to) | 1024-1031 |
Number of pages | 8 |
Journal | Journal of Low Temperature Physics |
Volume | 209 |
Issue number | 5-6 |
DOIs | |
State | Published - Dec 2022 |
Keywords
- CUPID
- Convolutional neural networks
- Cryogenic calorimeters
- Machine learning
- Majorana
- Neutrinoless double beta decay
- Pile-up
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Materials Science(all)
- Condensed Matter Physics