Many-access channels: The Gaussian case with random user activities

Xu Chen, Dongning Guo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Scopus citations

Abstract

Classical multiuser information theory studies the fundamental limits of models with a fixed (often small) number of users as the coding blocklength goes to infinity. This work proposes a new paradigm, referred to as many-user information theory, where the number of users is allowed to grow with the blocklength. This paradigm is motivated by emerging systems with a massive number of users in an area, such as machine-to-machine communication systems and sensor networks. The focus of the current paper is the many-access channel model, which consists of a single receiver and many transmitters, whose number increases unboundedly with the blocklength. Moreover, an unknown subset of transmitters may transmit in a given block and need to be identified. A new notion of capacity is introduced and characterized for the Gaussian many-access channel with random user activities. The capacity can be achieved by first detecting the set of active users and then decoding their messages.

Original languageEnglish (US)
Title of host publication2014 IEEE International Symposium on Information Theory, ISIT 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3127-3131
Number of pages5
ISBN (Print)9781479951864
DOIs
StatePublished - 2014
Event2014 IEEE International Symposium on Information Theory, ISIT 2014 - Honolulu, HI, United States
Duration: Jun 29 2014Jul 4 2014

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Other

Other2014 IEEE International Symposium on Information Theory, ISIT 2014
Country/TerritoryUnited States
CityHonolulu, HI
Period6/29/147/4/14

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Many-access channels: The Gaussian case with random user activities'. Together they form a unique fingerprint.

Cite this