TY - GEN
T1 - Mapping natural-language problems to formal-language solutions using structured neural representations
AU - Chen, Kezhen
AU - Huang, Qiuyuan
AU - Palangi, Hamid
AU - Smolensky, Paul
AU - Forbus, Kenneth D.
AU - Gao, Jianfeng
N1 - Publisher Copyright:
© 2020 37th International Conference on Machine Learning, ICML 2020. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Generating formal-language programs represented by relational tuples, such as Lisp programs or mathematical operations, to solve problems stated in natural language is a challenging task because it requires explicitly capturing discrete symbolic structural information implicit in the input. However, most general neural sequence models do not explicitly capture such structural information, limiting their performance on these tasks. In this paper, we propose a new encoder-decoder model based on a structured neural representation, Tensor Product Representations (TPRs), for mapping Natural-language problems to Formal-language solutions, called TPN2F. The encoder of TP-N2F employs TPR 'binding' to encode natural-language symbolic structure in vector space and the decoder uses TPR 'unbinding' to generate, in symbolic space, a sequential program represented by relational tuples, each consisting of a relation (or operation) and a number of arguments. TP-N2F considerably outperforms LSTM-based seq2seq models on two benchmarks and creates new state-of-the-art results. Ablation studies show that improvements can be attributed to the use of structured TPRs explicitly in both the encoder and decoder. Analysis of the learned structures shows how TPRs enhance the interpretability of TP-N2F.
AB - Generating formal-language programs represented by relational tuples, such as Lisp programs or mathematical operations, to solve problems stated in natural language is a challenging task because it requires explicitly capturing discrete symbolic structural information implicit in the input. However, most general neural sequence models do not explicitly capture such structural information, limiting their performance on these tasks. In this paper, we propose a new encoder-decoder model based on a structured neural representation, Tensor Product Representations (TPRs), for mapping Natural-language problems to Formal-language solutions, called TPN2F. The encoder of TP-N2F employs TPR 'binding' to encode natural-language symbolic structure in vector space and the decoder uses TPR 'unbinding' to generate, in symbolic space, a sequential program represented by relational tuples, each consisting of a relation (or operation) and a number of arguments. TP-N2F considerably outperforms LSTM-based seq2seq models on two benchmarks and creates new state-of-the-art results. Ablation studies show that improvements can be attributed to the use of structured TPRs explicitly in both the encoder and decoder. Analysis of the learned structures shows how TPRs enhance the interpretability of TP-N2F.
UR - http://www.scopus.com/inward/record.url?scp=85105153943&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105153943&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85105153943
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 1544
EP - 1553
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
PB - International Machine Learning Society (IMLS)
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -