Marginal policy gradients: A unified family of estimators for bounded action spaces with applications

Carson Eisenach*, Haichuan Yang, Ji Liu, Han Liu

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

4 Scopus citations

Abstract

Many complex domains, such as robotics control and real-time strategy (RTS) games, require an agent to learn a continuous control. In the former, an agent learns a policy over Rd and in the latter, over a discrete set of actions each of which is parametrized by a continuous parameter. Such problems are naturally solved using policy based reinforcement learning (RL) methods, but unfortunately these often suffer from high variance leading to instability and slow convergence. Unnecessary variance is introduced whenever policies over bounded action spaces are modeled using distributions with unbounded support by applying a transformation T to the sampled action before execution in the environment. Recently, the variance reduced clipped action policy gradient (CAPG) was introduced for actions in bounded intervals, but to date no variance reduced methods exist when the action is a direction, something often seen in RTS games. To this end we introduce the angular policy gradient (APG), a stochastic policy gradient method for directional control. With the marginal policy gradients family of estimators we present a unified analysis of the variance reduction properties of APG and CAPG; our results provide a stronger guarantee than existing analyses for CAPG. Experimental results on a popular RTS game and a navigation task show that the APG estimator offers a substantial improvement over the standard policy gradient.

Original languageEnglish (US)
StatePublished - 2019
Event7th International Conference on Learning Representations, ICLR 2019 - New Orleans, United States
Duration: May 6 2019May 9 2019

Conference

Conference7th International Conference on Learning Representations, ICLR 2019
Country/TerritoryUnited States
CityNew Orleans
Period5/6/195/9/19

ASJC Scopus subject areas

  • Education
  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Marginal policy gradients: A unified family of estimators for bounded action spaces with applications'. Together they form a unique fingerprint.

Cite this