Marscrete: A Martian Concrete for Additive Construction Applications Utilizing in Situ Resources

Matthew Troemner, Elham Ramyar, Raul Marrero, Kavya Mendu, Gianluca Cusatis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Astronauts in the Apollo Moon landings were provided a prefabricated habitation structure for the short duration on the lunar surface. While the Apollo Lunar Module was designed to house astronauts for only 75 h, a Martian habitat will require a much greater lifespan. For humans to thrive on Mars for any extended period, semi-permanent structures will have to be erected. Such a large and robust habitat would be impractical to transport prefabricated; thus, utilization of local geo-environmental resources is desired. This study presents recent research performed at Northwestern University towards the formulation and characterization of a Martian infrastructure material, called Marscrete. Marscrete is composed, in its simplest version, by sulfur and Martian regolith with a 50-50 mass ratio. Sulfur is plentiful in compounds on and below the surface of Mars, and regolith is a ubiquitous material. Marscrete is the Martian version of traditional sulfur concrete, which is manufactured by melting sulfur and mixing it with sand with approximately a 25-75 mass ratio. Results on compression strength tests, splitting tensile strength, and fracture tests show that Marscrete has significantly better mechanical properties than traditional sulfur concrete and even standard Portland cement concrete. While a generically suitable construction material, Marscrete, when modified with mission-recycled polyethylene fibers, also demonstrates high capabilities for 3D-printing applications - a likely automated construction technique of Martian structures. This paper will discuss the rheological behavior of fresh printable Marscrete, structural performance of the hardened composite, and pose an apparatus to produce 3D-printed Marscrete.

Original languageEnglish (US)
Title of host publicationEarth and Space 2021
Subtitle of host publicationSpace Exploration, Utilization, Engineering, and Construction in Extreme Environments - Selected Papers from the 17th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments
EditorsPaul J. van Susante, Alaina Dickason Roberts
PublisherAmerican Society of Civil Engineers (ASCE)
Pages801-807
Number of pages7
ISBN (Electronic)9780784483374
DOIs
StatePublished - 2021
Event17th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments, Earth and Space 2021 - Seattle, United States
Duration: Apr 19 2021Apr 23 2021

Publication series

NameEarth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments - Selected Papers from the 17th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments

Conference

Conference17th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments, Earth and Space 2021
Country/TerritoryUnited States
CitySeattle
Period4/19/214/23/21

ASJC Scopus subject areas

  • Building and Construction
  • Environmental Engineering
  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'Marscrete: A Martian Concrete for Additive Construction Applications Utilizing in Situ Resources'. Together they form a unique fingerprint.

Cite this